Dielectric and structural properties of iron- and sodium-fumarates

2012 ◽  
Vol 36 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Sonja Skuban ◽  
Tanja Džomié ◽  
Agneš Kapor ◽  
Željka Cvejić ◽  
Srđan Rakic

Abstract The behaviour of dielectric parameters such as the relative dielectric constant (ε''), the relative loss factor (ε'') and the ac conductivity of well known pharmaceutical materials Fe(II)-fumarate and Na-fumarate were studied as a function of temperature (in the range from 303K to 483 K) and frequency (in the range from 0.1 Hz to 100 kHz). The values of the conductivity are in the range of 10−5 Ω−1m−1 to 10−9 Ω−1m−1 for Fe(II)-fumarate and 10−6 Ω−1m−1 to 10−11 Ω−1m−1 for Na-fumarate. The conductivity of both materials increases with the increase in temperature and frequency. It was found that both ε' and ε'' decrease with increasing frequency and increase with increasing temperature for both materials. The highest changes are in the low frequency range. The obtained values of the dielectric parameters and conductivity suggest that these materials are dielectric with similar structure, most probably polymeric, with the mechanism of ionic conductivity.

2011 ◽  
Vol 110-116 ◽  
pp. 170-176
Author(s):  
Omed Ghareb Abdullah ◽  
Dana Abdull Tahir ◽  
Gelas Mukaram Jamal ◽  
Salah Raza Saeed

Dielectric constant and ac conductivity of Polyester doped with carbon black are investigated in the frequency range (0.5-103) KHz and within the temperature range (26-80) oC. Dielectric permittivity and loss tangent reduced with increasing frequency and increase with increasing temperature. The ac conductivity σac for all samples were found to be weak frequency dependent at low frequency, however vary with frequency as a power law ωs at higher frequency range. The variation of frequency exponential factor s between 0.63 and 0.77, indicates a dominant hopping process at low temperatures. From the temperature dependence of dc conductivity, the increase of activation energy was observed with carbon black concentrations.


Author(s):  
K.Ch. Varada Rajulu ◽  
B.N. Mohanty

This study presents the dielectric and conductivity properties as function of temperature and frequency of wood based composites. These properties were measured by an open-ended coaxial probe at frequency range between 100 kHz to 100MHz, temperature from 30OC to 200OC which is fully computer interfaced. It has been observed that dielectric constant (ε') and dielectric loss factor (ε") increase with increasing temperature and decrease with increasing frequency. At low temperature region, the conductivity depends significantly on the frequency. However, with the increase in temperature dielectric relaxation takes place and the dependency of the conductivity on frequency get reduced. The patterns of variation were established for the studied specimens and discrepancies were discussed. The study of dielectric properties will help in improving the drying, heating and gluing processes of wood and wood based products.


1995 ◽  
Vol 398 ◽  
Author(s):  
A.R. Guo ◽  
C.-S. Tu ◽  
Ruiwu Tao ◽  
R.S. Katiyar ◽  
Ruyan Guo ◽  
...  

ABSTRACTThe longitudinal (LO) and transverse (TO) A1 vibrational modes have been measured between 30-1200 cm−1 as a function of temperature (30–1240 K) for CsTiOAsO4 (CTA). The frequencies for all corresponding Raman components shifted to lower frequencies on increasing the temperature, however, there is no typical soft-mode like behavior observed in the measured frequency range. The relative intensities of the low frequency bands increase dramatically with increasing temperature due to high mobility of Cs+ ion. A higher symmetry structure taking place above 940K has been confirmed by changes in the phonon spectra.


2014 ◽  
Vol 974 ◽  
pp. 157-161
Author(s):  
Masturah Mohamed ◽  
Mahesh Talari ◽  
Mohd Salleh Mohd Deni ◽  
Azlan Zakaria

CaCu3Ti4O12(CCTO) is well known to have colossal dielectric constant in the range of 105.It is widely accepted that this phenomenon may be attributed to internal layer barrier capacitance (IBLC) model. The dielectric properties of CCTO were reported to be strongly dependent on the processing conditions and grain size. In this work, CCTO samples with different grain sizes were produced by varying sintering temperature in order to investigate IBLC effect on dielectric properties of CCTO. The samples were sintered at four different temperatures, (T=1100°C, 1050°C, 1000°C and 950°C). Dielectric measurements were carried out for the samples in the frequency range of 102– 106Hz using impedance spectrometer. Electron micrographs showed that increasing temperature promoted the grain growth of CCTO while sintering. The internal crystalline defects are seen to play major role by increasing the grain conductivity in dipole formation and increased the dielectric constant of the samples.


Author(s):  
Vishal Singh Chandel ◽  
Atiq UR Rahmanm ◽  
J. P. Shukla ◽  
Rajiv Manohar ◽  
Mohd. Shafi Khan

Effect of fungicides' (thiram, captan, carbendazim, bagalol) treatment on dielectric constant and dielectric loss of a vegetable seed, namely the brinjal at given moisture content and bulk density was examined using Hewlett-Packard (HP-4194A) impedance/gain phase analyzer over the frequency range of 0.01 to 10 MHz and temperature range of 30-450C. Julabo (temperature controller, F-25, Germany) was used for keeping the temperature of seeds constant. Study showed that fungicide treatment cast considerable change in dielectric parameters namely the dielectric constant and dielectric loss.


Author(s):  
S. F. Khor ◽  
Z. A. Talib ◽  
W. M. Daud ◽  
H. A. A. Sidek ◽  
W. M. M. Yunus ◽  
...  

(ZnO)30(MgO)x(P2O5)70-x glasses of the composition x = 5, 8 and 13 mol % have been prepared by melt quenching technique. The dielectric permittivity (89) and loss factor (8:) were measured in the frequency range from 0.01 Hz to 1 MHz and in the temperature range 303 to 573 K . From the results there are evidence of dipolar relaxation occurring between 103 – 106 Hz while at low frequency the spectrum is dominated by dc conduction which manifested by the 1/@ slope of loss factor plot. Value of the relaxing frequency (@p) plotted against 1/T shows one electrical transportation mechanism. The empirical data was sufficiently fitted by using Harviliak-Negami equation.


2014 ◽  
Vol 66 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Mohd. Shafi Khan ◽  
Vishal Singh Chandel ◽  
Rajiv Manohar ◽  
Jagdeesh Prasad Shukla

Abstract The present paper studied the dielectric constant, dielectric loss, and ac conductivity of fenugreek seed, a medicinal seed (Trigonella foenum graecum), within the frequency range of 10 kHz and 10 MHz and the temperature range of 30°C and 50°C. Impedance gain/phase analyser (HP 4194 A) was used to measure the dielectric constant and the dielectric loss and Julabo (temperature controller, F-25, Germany) was used for keeping the temperature of fenugreek seeds constant. It was found that the dielectric constant and the dielectric loss decrease with the increase in the frequency while the same increase with the increase in temperature and moisture content. The ac conductivity increased with the increase in frequency, moisture and temperature.


2018 ◽  
Vol 60 (2) ◽  
pp. 265
Author(s):  
В.Т. Аванесян ◽  
А.В. Ракина ◽  
В.Г. Пак ◽  
М.М. Сычев

AbstractThe frequency dependences of dielectric parameters of zinc sulfide electroluminescent polycrystalline structures doped with copper are studied in the dark and under light excitation in the visible wavelength range. A positive photodielectric effect most pronounced in the low-frequency range was revealed. The experimental results are explained within framework of formation of a space charge in the bulk of a semiconductor. The analysis of data indicates they can be correlated with luminance characteristics of an electroluminescent layer.


2006 ◽  
Vol 128 (3) ◽  
pp. 260-267 ◽  
Author(s):  
C. Remillat ◽  
M. R. Hassan ◽  
F. Scarpa

This work illustrates viscoelastic testing and fractional derivative modelling to describe the thermally induced transformation equivalent viscoelastic damping of NiTiCu SMA ribbons. NiTiCu SMA ribbons have been recently evaluated to manufacture novel honeycombs concepts (conventional and negative Poisson’s ratio) in shape memory alloys for high damping and deployable sandwich antennas constructions. The dynamic mechanical thermal analysis (DMTA) test has been carried out at different frequencies and temperatures, with increasing and decreasing temperature gradients. Thermally induced transformations (austenitic and martensitic) provide damping peaks at low frequency range excitations. On the opposite, the storage moduli are not affected by the harmonic pulsation. As the SMA ribbon increases its stiffness, the damping capacity reduces, and the loss factor drops dramatically at austenite finish temperature. The fractional derivative models provide a compact representation of the asymmetry of the peak locations, as well as the storage modulus change from martensite to austenite phases.


Sign in / Sign up

Export Citation Format

Share Document