scholarly journals Consumption of the sewing thread of jean pant using taguchi design analysis

2012 ◽  
Vol 12 (4) ◽  
pp. 81-86 ◽  
Author(s):  
B. Jaouachi ◽  
F. Khedher ◽  
F. Mili

Abstract This work deals with the evaluation of sewing thread consumption in jeans and classic pants clothing. Six different input parameters are chosen and used for investigation. To objectively evaluate their contributions, a Taguchi design analysis was applied. Based on the comparison between each input parameter effect, this experimental analysis helped us to classify the overall tested factors. Indeed, our findings show that the sewing yarn affects widely the thread consumption during stitching of the pant. In spite of their non negligible impact, the number of stitches per cm and the needle type can be considered as influential input factors on thread consumption. In our experimental design the other tested factors were kept constant.

1991 ◽  
Vol 81 (3) ◽  
pp. 796-817
Author(s):  
Nitzan Rabinowitz ◽  
David M. Steinberg

Abstract We propose a novel multi-parameter approach for conducting seismic hazard sensitivity analysis. This approach allows one to assess the importance of each input parameter at a variety of settings of the other input parameters and thus provides a much richer picture than standard analyses, which assess each input parameter only at the default settings of the other parameters. We illustrate our method with a sensitivity analysis of seismic hazard for Jerusalem. In this example, we find several input parameters whose importance depends critically on the settings of other input parameters. This phenomenon, which cannot be detected by a standard sensitivity analysis, is easily diagnosed by our method. The multi-parameter approach can also be used in the context of a probabilistic assessment of seismic hazard that incorporates subjective probability distributions for the input parameters.


2020 ◽  
Vol 13 (2) ◽  
pp. 1
Author(s):  
E. M. Samogim ◽  
T. C. Oliveira ◽  
Z. N. Figueiredo ◽  
J. M. B. Vanini

The combine harvest for soybean crops market are currently available two types of combine with header or platform, one of conventional with revolving reel with metal or plastic teeth to cause the cut crop to fall into the auger header and the other called "draper" headers that use a fabric or rubber apron instead of a cross auger, there are few test about performance of this combine header for soybean in Mato Grosso State. The aim of this work was to evaluate the soybean harvesting quantitative losses and performance using two types combine header in four travel speed. The experiment was conducted during soybean crops season 2014/15, the farm Tamboril in the municipality of Pontes e Lacerda, State of Mato Grosso. The was used the experimental design of randomized blocks, evaluating four forward harvesting speeds (4 km h-1, 5 km h-1, 6 km h-1 and 7 km h-1), the natural crops losses were analyzed, loss caused by the combine harvester (combine header, internal mechanisms and total losses) and was also estimated the  field performance of each combine. Data were submitted to analysis of variance by F test and compared of the average by Tukey test at 5% probability. The results show the draper header presents a smaller amount of total loss and in most crop yield when compared with the conventional cross auger.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


Author(s):  
Amr A. El-Waseif ◽  
Tasneem Y. Roshdy ◽  
M.O. Abdel-Monem ◽  
Mervat G. Hassan

2012 ◽  
Vol 5 (3) ◽  
pp. 305-315
Author(s):  
P. P. Nascimento ◽  
R. B. Gomes ◽  
L. L. J. Borges ◽  
D. L. David

There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups), bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.


2007 ◽  
Vol 13 (4) ◽  
pp. 333-340
Author(s):  
Gintautas Šatkauskas

Input parameters, ie factors defining the market price of agricultural‐purpose land, are interrelated very often by means of non‐linear ties. Strength of these ties is rather different and this limits usefulness of information in the research process of land market prices. Influence of input parameter changes to the input parameters in case when there are rather substantial changes may be determined in someone direction with a sufficient precision, whereas in other directions with comparatively small changes of input parameters this influence is difficult to be separated from the “noise” background. Taking into account the above‐listed circumstances, the concept of economical‐mathematical model of land market should be as follows: there is carried out re‐parameterisation of the process by means of introduction of new parameters in such a way that the new parameters are not interrelated, and the full process is evaluated at the minimal number of these parameters. These requirements are met by the main components of the input parameters. Then normalisation of the main components is carried out and dependencies on new parameters are determined. It is easier to interpret the dependencies obtained having reduced the number of input parameters and the higher the non‐linearity of interrelations of primary land market data, the greater effect of normalisation of input-parameter components. The results are compared with the valuations of experts.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 38
Author(s):  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Amir Radzi Abdul Ghani ◽  
Rizal Effendy Mohd Nasir ◽  
Zulkifli Muhammad

Stiffened panels are the structure used in the aircraft wing skin panels. Stiffened panels are often critical in compression load due to its thin structural configuration. This paper analyzes the critical loads of a multi configuration stiffened panels under axial compressive loading. The study comprised three main sections; theoretical analysis, numerical analysis and experimental analysis. The present paper deals only with the theoretical analysis. This first part of analysis is very important since the results will be the main input parameter for the subsequent numerical and experimental analysis. The analysis was done on the buckling properties of the panels. Four panel configurations were investigated. Results showed that even though the stiffened panels have the same cross-sectional area, their critical loads were not identical.   


2020 ◽  
Vol 55 (2) ◽  
pp. 10-25
Author(s):  
M. O. Iwuagwu ◽  
D. A. Okpara ◽  
C. O. Muoneke

Field experiment was conducted at National Horticultural Research Institute (NIHORT), Mbato Sub-station, Okigwe, Imo State, South-eastern Nigeria in the 2012 and 2013 cropping seasons to establish the most appropriate time to introduce component crops in cocoyam/cowpea mixture. Five different planting schemes (two and four weeks before, two and four weeks after and same day) and two cowpea genotypes (climbing Akidienu and erect IT97K-499-35) were used. The component crops were grown in monocultures to assess the productivity of the systems. The experimental design used was a completely randomized design with three replicates. Growth and yield of cocoyam and the cowpea genotypes increased significantly (P<0.05) when either of the component crops was planted earlier than the other. Intercropping reduced significantly (P<0.05) cocoyam yield by 0.7 − 74% in IT97K-499-35 and 22 − 80% in Akidienu. Sowing the cowpea genotypes the same day or before cocoyam resulted in over-yielding of cowpea, whereas sowing Akidienu and IT97K-499-35 after cocoyam caused pod yield reductions of 64% − 73% and 32% − 59% on average, respectively. Cocoyam planted two weeks before IT97K-499-35 produced more satisfactory yields of the intercrops than the other planting schedules with LER, LEC and ATER of 2.15, 1.03 and 1.57, respectively.


Author(s):  
Nitin Nagesh Kulkarni ◽  
Stephen Ekwaro-Osire ◽  
Paul F. Egan

Abstract 3D printing has enabled new avenues to design and fabricate diverse structures for engineering applications, such as mechanically efficient lattices. Lattices are useful as implants for biological applications for supporting in vivo loads. However, inconsistencies in 3D printing motivates a need to quantify uncertainties contributing to mechanical failure using probabilistic analysis. Here, 50 cubic unit cell lattice samples were printed and tested with designs of 50% porosity, 500-micron beam diameters, and 3.5mm length, width, and height dimensions. The average length, width, and height measurements ranged from 3.47mm to 3.48mm. The precision in printing with a 95% confidence level was greater than 99.8%. Lattice elastic moduli ranged from about 270 MPa to 345 MPa, with a mean of 305 MPa. Probabilistic analyses were conducted with NESSUS software. The distributions of input parameters were determined using a chi-square test. The first-order reliability method was used to calculate the probability of failure and sensitivity of each input parameter. The elastic modulus was the most sensitive among all input parameters, with 57% of the total sensitivity. The study quantified printing inconsistencies and sensitives using empirical evidence and is a significant step forward for designing 3D printed parts for mechanical applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Boubaker Jaouachi ◽  
Faouzi Khedher

PurposeThis work highlights the optimization of the consumed amount of sewing thread required to make up a pair of jeans using three different metaheuristic methods; particular swarm optimization (PSO), ant colony optimization (ACO) and genetic algorithm (GA) techniques. Indeed, using metaheuristic optimization techniques enable industrialists to reach the lowest sewing thread quantities in terms of bobbins per garments. Besides, the compared results of this research can obviously prove the impact of each input parameter on the optimization of the sewing thread consumption per pair of jeans.Design/methodology/approachTo assess objectively the sewing thread consumption, the optimized sewing conditions such as thread composition, needle size and fabric composition are investigated and discussed. Hence, a Taguchi design was elaborated to evaluate and optimize objectively the linear model consumption. Thanks to its principal characteristics and popularity, denim fabric is selected to analyze objectively the effects of studied input parameters. In addition, having workers with same skills and qualifications to repeat each time the same sewing process will involve having the same sewing thread consumption values. This can occur in some levels such as end of sewing, the number of machine failures, the kind of failure and its complexity, the competency of the mechanic and his way to repair failure, the loss of thread caused by threading and its frequency. Seam repetition due to operator lack of skill will obviously affect clothing appearance and hence quality decision. Interesting findings and significant relationship between input parameters and the amount of sewing thread consumption are established.FindingsAccording to the comparative results obtained using metaheuristic methods, the PSO and ACO technique gives the lowest values of the consumption within the best combination of input parameters. The results show the accuracy of the applied metaheuristic methods to optimize the consumed amount needed to sew a pair of jeans with a notable superiority of both PSO and ACO methods compared to experimental ones. However, compared to GA method, ACO and PSO algorithms remained the most accurate techniques allowing industrials to minimize the consumed thread used to sew jeans. They can also widely optimize and predict the consumed thread in the investigated experimental design of interest. Consequently, compared to experimental results and regarding the low error values obtained, it may be concluded that the metaheuristic methods can optimize and evaluate both studied input and output parameters accurately.Practical implicationsThis study is most useful for denim industrial applications, which makes it possible to anticipate, calculate and minimize the high consumption of sewing threads. This paper has not only practical implications for clothing appearance and quality but also for reduction in thread wastage occurring during shop floor conditions like machine running, thread breakage, repairs, etc. (Kawabata and Niwa, 1991). Unless the used sewing machine is equipped within a thread trimmer improvement in garment seam appearance cannot be achieved. By comparing and analyzing the operating activities of the regular lock stitch 301 machine with and without a thread trimmer, a difference in time processing can be grasped (Magazine JUKI Corporation, 2008). Time consumed in trimming by a lockstitch machine without a thread trimmer equals 3.1 s compared to 2.6 s by a thread trimming one. Hence, the reduction rate in the time processing equals 16.30%. This paper aimed to implement the optimal consumption (thread waste outstanding number of trials). Unless highly skilled workers are selected and well-motivated, the previous recommended changes will not be applied. The saved cost of the sewing thread reduction can be used to buy a better quality of fabric and/or thread. However, these factors are not always the same as they can vary according to customer's requirements because thread consumption is never a standard for sewn product categories such as trousers, shirts and footwear (Khedher and Jaouachi, 2015).Originality/valueUntil now, there is no work dealing with the investigation of the metaheuristic optimization of the consumed thread per pair of jeans to minimize accurately the amount of sewing thread as well as the sewing thread wastage. Even though these techniques of optimization are currently in full development due to some advantages such as generality and possible application to a large class of combinatorial and constrained assignment problems, efficiency for many problems in providing good quality approximate solutions for a large number of classical optimization problems and large-scale real applications, etc., are not applied yet to decrease sewing thread consumption. Some recent published works used statistical techniques (Taguchi, factorial, etc.), to evaluate approximate consumptions; conversely, other geometrical and mathematical approaches, considering some assumptions, used stitch geometry and remained insufficient to give the industrialists an implemented application generating the exact value of the consumed amount of sewing thread. Generally, in the clothing field 10–15% of sewing thread wastage should be added to the experimental approximate consumption value. Moreover, all investigations are focused on the approximative evaluations and theoretical modeling of sewing thread consumption as function of some input parameters. Practically, the obtained results are successfully applied and the ACO method gives the most accurate results. On the other hand, in the point of view of industrialists the applied metaheuristic methods (based on algorithms) used to decrease the amount of consumed thread remained an easy and fruitful solution that can allow them to control the number of sewing thread bobbin per garments.


Sign in / Sign up

Export Citation Format

Share Document