scholarly journals ROBUST ALTERNATIVES TO THE TUKEY'S CONTROL CHART FOR THE MONITORING OF THE STATISTICAL PROCESS MEAN

2019 ◽  
Vol 13 (3) ◽  
pp. 641-654
Author(s):  
Moustafa Omar Ahmed AbuShawiesh ◽  
◽  
Hayriye Esra Akyüz ◽  
Hatim Solayman Ahmed Migdadi ◽  
B.M. Golam Kibria ◽  
...  
Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 312 ◽  
Author(s):  
Muhammad Zahir Khan ◽  
Muhammad Farid Khan ◽  
Muhammad Aslam ◽  
Seyed Taghi Akhavan Niaki ◽  
Abdur Razzaque Mughal

Conventional control charts are one of the most important techniques in statistical process control which are used to assess the performance of processes to see whether they are in- or out-of-control. As traditional control charts deal with crisp data, they are not suitable to study unclear, vague, and fuzzy data. In many real-world applications, however, the data to be used in a control charting method are not crisp since they are approximated due to environmental uncertainties and systematic ambiguities involved in the systems under investigation. In these situations, fuzzy numbers and linguistic variables are used to grab such uncertainties. That is why the use of a fuzzy control chart, in which fuzzy data are used, is justified. As an exponentially weighted moving average (EWMA) scheme is usually used to detect small shifts, in this paper a fuzzy EWMA (F-EWMA) control chart is proposed to detect small shifts in the process mean when fuzzy data are available. The application of the newly developed fuzzy control chart is illustrated using real-life data.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 154
Author(s):  
Anderson Fonseca ◽  
Paulo Henrique Ferreira ◽  
Diego Carvalho do Nascimento ◽  
Rosemeire Fiaccone ◽  
Christopher Ulloa-Correa ◽  
...  

Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 537
Author(s):  
Alain Gil Del Val ◽  
Fernando Veiga ◽  
Mariluz Penalva ◽  
Miguel Arizmendi

Automotive, railway and aerospace sectors require a high level of quality on the thread profiles in their manufacturing systems knowing that the tapping process is a complex manufacturing process and the last operation in a manufacturing cell. Therefore, a multivariate statistical process control chart, for each tap, is presented based on the principal components of the torque signal directly measured from spindle motor drive to diagnosis the thread profile quality. This on-line multivariate control chart has implemented an alarm to avoid defected screw threads (oversized). Therefore, it could work automatically without any operator intervention assessing the thread quality and the safety is guaranteed during the tapping process.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250083
Author(s):  
PERSHANG DOKOUHAKI ◽  
RASSOUL NOOROSSANA

In the field of statistical process control (SPC), usually two issues are addressed; the variables and the attribute quality characteristics control charting. Focusing on discrete data generated from a process to be monitored, attributes control charts would be useful. The discrete data could be classified into two categories; the independent and auto-correlated data. Regarding the independence in the sequence of discrete data, the typical Shewhart-based control charts, such as p-chart and np-chart would be effective enough to monitor the related process. But considering auto-correlation in the sequence of the data, such control charts would not workanymore. In this paper, considering the auto-correlated sequence of X1, X2,…, Xt,… as the sequence of zeros or ones, we have developed a control chart based on a two-state Markov model. This control chart is compared with the previously developed charts in terms of the average number of observations (ANOS) measure. In addition, a case study related to the diabetic people is investigated to demonstrate the applicability and high performance of the developed chart.


2013 ◽  
Vol 845 ◽  
pp. 696-700
Author(s):  
Razieh Haghighati ◽  
Adnan Hassan

Traditional statistical process control (SPC) charting techniques were developed to monitor process status and helping identify assignable causes. Unnatural patterns in the process are recognized by means of control chart pattern recognition (CCPR) techniques. There are a broad set of studies in CCPR domain, however, given the growing doubts concerning the performance of control charts in presence of constrained data, this area has been overlooked in the literature. This paper, reports a preliminary work to develop a scheme for fault tolerant CCPR that is capable of (i) detecting of constrained data that is sampled in a misaligned uneven fashion and/or be partly lost or unavailable and (ii) accommodating the system in order to improve the reliability of recognition.


2019 ◽  
Vol 27 (1) ◽  
pp. 221-226
Author(s):  
Siyuan F. Yang ◽  
Wei-Ting K. Chien

Author(s):  
Hourieh Foroutan ◽  
Amirhossein Amiri ◽  
Reza Kamranrad

In most statistical process control (SPC) applications, quality of a process or product is monitored by univariate or multivariate control charts. However, sometimes a functional relationship between a response variable and one or more explanatory variables is established and monitored over time. This relationship is called “profile” in SPC literature. In this paper, we specifically consider processes with compositional data responses, including multivariate positive observations summing to one. The relationship between compositional data responses and explanatory variables is modeled by a Dirichlet regression profile. We develop a monitoring procedure based on likelihood ratio test (lrt) for Phase I monitoring of Dirichlet regression profiles. Then, we compare the performance of the proposed method with the best method in the literature in terms of probability of signal. The results of simulation studies show that the proposed control chart has better performance in Phase I monitoring than the competing control chart. Moreover, the proposed method is able to estimate the real time of a change as well. The performance of this feature is also investigated through simulation runs which show the satisfactory performance. Finally, the application of the proposed method is illustrated based on a real case in comparison with the existing method.


2015 ◽  
Vol 35 (6) ◽  
pp. 1079-1092 ◽  
Author(s):  
Murilo A. Voltarelli ◽  
Rouverson P. da Silva ◽  
Cristiano Zerbato ◽  
Carla S. S. Paixão ◽  
Tiago de O. Tavares

ABSTRACT Statistical process control in mechanized farming is a new way to assess operation quality. In this sense, we aimed to compare three statistical process control tools applied to losses in sugarcane mechanical harvesting to determine the best control chart template for this quality indicator. Losses were daily monitored in farms located within Triângulo Mineiro region, in Minas Gerais state, Brazil. They were carried over a period of 70 days in the 2014 harvest. At the end of the evaluation period, 194 samples were collected in total for each type of loss. The control charts used were individual values chart, moving average and exponentially weighted moving average. The quality indicators assessed during sugarcane harvest were the following loss types: full grinding wheel, stumps, fixed piece, whole cane, chips, loose piece and total losses. The control chart of individual values is the best option for monitoring losses in sugarcane mechanical harvesting, as it is of easier result interpretation, in comparison to the others.


2018 ◽  
Vol 7 (1) ◽  
pp. 23-32
Author(s):  
Adestya Ayu Maharani ◽  
Mustafid Mustafid ◽  
Sudarno Sudarno

Water is one of the most important elements for human life, water treatment is done for human consumption and must fulfill the health requirements with the levels of certain parameters. Quality of Water Treatment II is the second water purification installation owned by PDAM Tirta Moedal Semarang City with production capacity of 60 l/s. Variables used in the water treatment process are correlated with each other, so used multivariate control chart. The Multivariate Exponentially Weighted Moving Average control chart is used for monitoring process mean, and the Multivariate Exponentially Weighted Moving Variance control chart is used for monitoring process variability. The variables used are colour, turbidity, organic substance, manganese and the total dissolved solid. MEWMA control chart with λ = 0.5, showed that the process mean is controlled statistically. MEWMV control chart showed that variability is controlled statistically in λ = 0.4, ω = 0.2 and L = 3.3213. MEWMA and MEWMV control chart showed that the process is not capable because it obtained the value of process capability index less than 1. Keywords: Water, Multivariate Exponentially Weighted Moving Average, Multivariate Exponentially Weighted Moving Variance, process capability.


Sign in / Sign up

Export Citation Format

Share Document