scholarly journals VALUE OF LANGUAGE BACKGROUND ON IDEA GENERATION SESSIONS IN FIRST-YEAR ENGINEERING DESIGN TEAMS

Author(s):  
Penny Kinnear ◽  
Patricia Sheridan ◽  
Doug Reeve ◽  
Greg Evans

 Abstract – An ongoing debate around classroom organization decisions, particularly with regard to team formation, involves the value associated with team-member diversity. Diversity can be defined, for example, in terms of discipline, marks, race, gender, language, age, experience, or goals. For the researchers in this case, this debate around the impact of diversity motivated further analysis of just what, if any, impact linguistic diversity had on teams in first-year engineering design courses. This is of particular concern given the dramatic increase in the percentage of multilingual students that make up current student bodies across Canada. Our analysis indicates that the effect of having non-native speakers of English (NNSE) on a team is not a de facto detriment to idea generation and discussions within the team. Thus, this paper reports on the effects of multilingualism on team dynamics and idea generation. The authors present here a subset of the data from of a much larger study on effective teamwork behaviours, that highlights two multilingual dominant teams from the larger study. The analysis examines how multilingualism and values associated with it contributed to and developed an integrated understanding of both the problem being addressed and potential solutions to that problem.

Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller

Interacting with example products is an essential and widely practiced method in engineering design, yet little information exists on how the representation (pictorial or physical) or interaction a designer has with an example impacts design creativity. This is problematic because without this knowledge we do not understand how examples affect idea generation or how we can effectively modify or develop design methods to support example usage practices. In this paper, we report the results of a controlled study with first year engineering design students (N = 89) developed to investigate the impact of a designer's interaction with either a two-dimensional (2D) pictorial image or a three-dimensional (3D) product (through visual inspection or product dissection activities) and the resulting functional focus and creativity of the ideas developed. The results of this study reveal that participants who interacted with the physical example produced ideas that were less novel and less functionally focused than those who interacted with the 2D representation. Additionally, the results showed that participants who dissected the product produced a higher variety of ideas than those that visually inspected it. These results contribute to our understanding of the benefits and role of 2D and 3D designer-product interactions during idea development. We use these findings to develop recommendations for the use of designer-product interactions throughout the design process.


Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education as a component of larger engineering design projects, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the goal of this study was to investigate the impact of the type(s) of product dissected in a team environment on the breadth of the design space explored and the underlying influence of educational level on these effects. This was accomplished through a computational simulation of 7,000 nominal brainstorming teams generated by a statistical bootstrapping technique that accounted for all possible team configurations. Specifically, each team was composed of four team members based on a design repository of 463 ideas generated by first-year and senior engineering design students after a product dissection activity. The results of the study highlight that simulated senior engineering design teams explored a larger solution space than simulated first-year teams and that dissecting different types of products allowed for the exploration of a larger solution space for all of the teams. The results also showed that dissecting two analogically far and two simple products was most effective in expanding the solution space for simulated senior teams. The findings presented in this study can lead to a better understanding of how to most effectively deploy product dissection modules in engineering design education in order to maximize the solution space explored.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the purpose of this study was to investigate the impact of the type(s) of product dissected in a team environment on encouraging creative design outcomes (variety, novelty, and quantity) and the underlying influence of educational level and dissection modality on these effects. This was accomplished through a computational simulation of 14,000 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique using a design repository of 931 ideas generated by first-year and senior engineering students. The results of the study highlight the importance of educational level, dissection modality, and the number of products dissected on team design outcomes. Specifically, virtual dissection encouraged the exploration of more novel solutions across both educational levels. However, physical dissection encouraged the exploration of a larger variety and quantity of ideas for senior teams while virtual dissection encouraged the same in first-year teams. Finally, dissecting different types of products allowed teams to explore a larger solution space. The findings presented in this study can lead to a better understanding of how to deploy product dissection modules in engineering design education in order to drive creative design outcomes.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


Author(s):  
Remon Pop-Iliev ◽  
Scott Nokleby ◽  
George Platanitis

Since 2005, with the endowment of the NSERC-GMCL Chair in Innovative Design Engineering at UOIT, and the Laptop-based, web-centric teaching approach, an ideal setting for the creation, prompt adoption, and implementation of advanced and innovative practices in teaching design engineering have been implemented, in addition to the use of traditional methods. A pilot program was recently completed to evaluate the use of Tablets in an engineering course. Tablets are currently used by faculty for teaching purposes at UOIT, but the program aims to integrate the use of Tablets within courses in the engineering design curriculum, namely for using CAD/CAM/CAE software. As CAD software capabilities improve, greater memory and computer speed is required, making the currently used conventional Laptops less useful for engineering design. In addition, Laptops do not lend themselves to graphical, free-form idea generation. It is intended that Tablets, with improved memory and processing speed, will facilitate CAD software usage, and hence, improve and enhance the overall design learning and application experience. Also, students can take advantage of software such as Microsoft OneNote to create preliminary sketches of designs and improve record-keeping of decisions during team meetings. In this pilot program, Tablet computers were issued to students and instruction personnel in a fourth-year Advanced Mechatronics course at UOIT. In this context, students were able to more efficiently carry out design assignments for term design projects, and students and instructors were able to evaluate the benefits of using Tablets. Overall, it was determined that Tablets were better as an engineering design tool compared to traditional Laptops.


Author(s):  
Michael W. Glier ◽  
Joanna Tsenn ◽  
Julie S. Linsey ◽  
Daniel A. McAdams

Bioinspired design, the practice of looking to nature to find inspiration for engineering design, is becoming an increasingly desired approach to design. It allows designers to tap a wealth of time-tested solutions to difficult problems in a domain rarely considered by designers. Only recently have researchers developed organized, systematic methods for bioinspired design. These methods include BioTRIZ, an extension of functional modeling for bioinspired design, engineering-to-biology keyword translation tools, and specialized design tools like DANE and SAPPHIRE. These organized methods are currently active research efforts. Traditionally, however, bioinspired design has been conducted without the benefit of any organized method. Without the support of formal methods, designers have relied on the “directed method” of bioinspired design. The directed method approach simply directs designers to consider how nature might approach a problem in order to help designers find solutions. This paper presents an experiment to explore the impact upon idea generation of simply contemplating how nature would solve a design problem. This experiment is foundationally important to bioinspired engineering design method research. The results of this experiment serve as a fundamental baseline and benchmark for the comparison of more systematic, and often more involved, bioinspired design methods. A group of 121 novice designers are given one of two design problems and instructed to either generate solutions using the “directed method,” considering how nature would solve the problem, or to generate solutions without being prompted to use any method. Based on the findings presented here, the directed method offers designers no advantage in the average number of non-redundant ideas the designers can produce, the average quality of their solutions, the average solution novelty, or the variety of solutions proposed. Overall, this investigation finds no significant difference in idea generation between the directed method and the control condition. In conclusion, systematic and organized methods for bioinspired design should instead be sought to effectively leverage nature’s design knowledge.


Author(s):  
Katie Heininger ◽  
Hong-En Chen ◽  
Kathryn Jablokow ◽  
Scarlett R. Miller

The flow of creative ideas throughout the engineering design process is essential for innovation. However, few studies have examined how individual traits affect problem-solving behaviors in an engineering design setting. Understanding these behaviors will enable us to guide individuals during the idea generation and concept screening phases of the engineering design process and help support the flow of creative ideas through this process. As a first step towards understanding these behaviors, we conducted an exploratory study with 19 undergraduate engineering students to examine the impact of individual traits, using the Preferences for Creativity Scale (PCS) and Kirton’s Adaption-Innovation inventory (KAI), on the creativity of the ideas generated and selected for an engineering design task. The ideas were rated for their creativity, quality, and originality using Amabile’s consensual assessment technique. Our results show that the PCS was able to predict students’ propensity for creative concept screening, accounting for 74% of the variation in the model. Specifically, team centrality and influence and risk tolerance significantly contributed to the model. However, PCS was unable to predict idea generation abilities. On the other hand, cognitive style, as measured by KAI, predicted the generation of creative and original ideas, as well as one’s propensity for quality concept screening, although the effect sizes were small. Our results provide insights into individual factors impacting undergraduate engineering students’ idea generation and selection.


Author(s):  
Geraldine Van Gyn ◽  
Peter Wild

In a 2006 study to assess student engagement in the first year, engineering students were the least likely to express positive views about that experience and reported low levels of academic engagement. Initiatives to address this situation in engineering were in progress, including the development of two first year courses integrated engineering design with required writing courses. To monitor engagement and satisfaction, and assess the impact of the course interventions, the same research methodology as the 2006 study was used in 2010, 2011, and 2012 following the implementation of these courses. Participants in focus groups discussed questions related to engagement and identified factors that had led to their satisfaction or dissatisfaction. Themes identified for the three different time periods were compared to each other and to those that emerged in the original 2006 study. Significant among the themes was the experience in the design/communications courses. Themes of dissatisfaction and alienation were highly consistent with the 2006 study but became moderated. This process reinforced the need for authentic engineering course experiences in the first year and is consistent with previous research.


Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller

Designers commonly interact with products in the early phases of design in order to understand the solution space and gain inspiration for new designs. Although designer-product interaction methods such as visual inspection and product dissection are recognized as a pivotal component of the engineering design process, little data is available on how these practices affect idea generation or when these activities are most useful for inspiring creative thought. Therefore, the current study was developed to understand the impact of these activities on creative idea generation. During our controlled study, fifty-nine undergraduate engineering students were instructed to either visually inspect or physically dissect an example milk frother and then generate ideas for a new, innovative design. These concepts were then evaluated for their novelty, variety, quality and quantity. Our analysis (ANOVA) revealed that participants who physically dissected the example frother produced ideas that were more novel but of lower quality than those that simply inspected the frother. Our results provide insights on the impact of designer-product interactions on creativity and we use these findings to develop recommendations for the use and alterations of these practices for improving creativity in engineering design.


Sign in / Sign up

Export Citation Format

Share Document