scholarly journals PENGARUH UKURAN BUTIRAN MAKSIMUM TERHADAP KUAT TEKAN REACTIVE POWDER CONCRETE

Author(s):  
Arianti Sutandi ◽  
Widodo Kushartomo

Kuat tekan beton merupakan faktor yang paling dominan untuk menentukan kualitas beton dibandingkan faktor lainnya. Kuat tekan beton atau mutu beton dipengaruhi oleh beberapa faktor diantaranya adalah perbandingan semen terhadap air (fa/s), kualitas material, perbandingan komposisi material dan sebagainya. Gradasi butiran agregat  juga merupakan salah satu faktor yang berperan penting untuk menentukan mutu beton. Agregat dengan ukuran butiran yang lebih halus dan bervariasi dapat memperkecil volume pori yang terbentuk, sehingga susunan butiran yang baik akan menghasilkan kepadatan tinggi dan porositas minimum. Pada penelitian ini dipelajarai pengaruh ukuran butiran maksimum agregat halus terhadap  kuat tekan reactive powder concrete. Benda uji dibuat dalam bentuk silinder dengan diameter 100,0 mm dan tinggi 200,0 mm. Ukuran diameter maksimum agergat halus dibuat dalam tiga jenis yaitu 300 µm. 425 µm, dan 600 µm. Seluruh benda uji dirawat dengan teknik perendaman selama 3 hari, dilanjutkan dengan steam curing pada temperature 90 oC – 95 oC selama 4 jam. Pengujian kuat tekan dilakukan pada umur 7 hari. Hasil pengujian menunjukkan terjadinya peningkatan kuat tekan recative powder concrete dengan bertambah kecilnya ukuran butiran maksimum agregat halus. The compressive strength of concrete is the most dominant factor to determine concrete quality compared to other factors. Concrete compressive strength and grade are influenced by several factors, including water cement ratio (fa/s), material quality, material composition, and others. Aggregate gradation is also one of the dominant factors that play an important role in determining the quality of concrete. Finer and varied aggregate size can reduce void volume, so that a good granular structure will produce high density and minimum porosity. In this research, the effect of maximum size of fine aggregate on the compressive strength of reactive powder concrete was studied. The specimens were made in cylindrical shapes with a diameter of 100.0 mm and a height of 200.0 mm. The maximum diameter size of fine agergate was varied in three types, 300 µm. 425 µm, and 600 µm. All specimens were treated with immersion technique for 3 days, followed by steam curing at 90 oC - 95 oC for 4 hours. Compressive strength testing was done at the age of 7 days. The test results showed that the increase of maximum fine aggregate size increase the compressive strength of reactive powder concrete.

2020 ◽  
Vol 26 (1) ◽  
pp. 1-8
Author(s):  
Widodo Kushartomo ◽  
Dewi Linggasari ◽  
Arianti Sutandi

Modulus of rupture (R) is a measurement of a tensile strengh of a concrete beam. The value of R is affected by the size of fine aggregat grain, the density of the concrete beam and the water-cement ratio. The unit of R is MPa expressing the tensile strength of the concrete beam without reinforcement to withstand a buckling failure. The distance between the supports of the concrete beam should not be less than three times of the height of the beam. In this research the size of the concrete beam speciment was 100 mm x 100 mm x 350 mm, the maximum fine aggregate size was varied (300 µm, 425 µm, and 600 µm) and the water-cement ratio was also varied (0.25, 0.22 and 0,20). All speciments were cured by steam curing and were tested after seven days. The results show that the larger the size of the fine aggregat grain and the higher the water-cement ratio, the smaller the R.


Author(s):  
Abrahão Bernardo Rohden ◽  
Ana Paula Kirchheim ◽  
Denise Dal Molin

abstract: Recent reports on reactive powder concrete address important aspects regarding its performance. Several techniques are used to improve the design of such concretes. Ultra-high compressive strengths have been reported with the application of pre-setting pressure and autoclave curing. The objective of this work is to evaluate the use of very fine quartz powder to replace fine aggregate, nanosilica, and inorganic pigments to optimize mechanical properties of reactive powder concrete. The experimental work was developed in three distinct phases. In the first phase, mix-proportions of reactive powder concrete have been developed, considering different maximum aggregate sizes (1.2, 0.6, 0.075, and 0.045 mm). In the second phase, the influence of nanosilica on the properties of reactive powder concrete was evaluated. In the third phase, the effect of the addition of yellow, green, orange, and blue inorganic pigments to the reactive powder concrete mix-design was evaluated. Results show that the maximum aggregate size influences the compressive strength of the reactive powder concrete. A decrease from 1.2 mm to 0.045 mm in the maximum aggregate size resulted in 156 MPa increase in the compressive strength. The type of pigment did not significantly influence the compressive strength of the reactive powder concrete. The mix-proportion that resulted in the highest compressive strength (310.7 MPa) was designed using yellow pigment.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2014 ◽  
Vol 597 ◽  
pp. 320-323 ◽  
Author(s):  
De Hong Wang ◽  
Yan Zhong Ju ◽  
Wen Zhong Zheng

Mechanical properties of reactive powder concrete (RPC) containing fly ash were investigated under different curing regimes (standard and steam curing) in this study. The experimental results indicate that, flexural strength of RPC increased considerably after steam curing, compared to the standard curing. Steam curing had no significant effect on compressive strength of RPC. Increasing the fly ash content improved the flexural strength of RPC under all curing regimes considerably. The compressive strength reached a maximum (103.8MPa) when the fly to ash and cement ratio is 0.3.


2009 ◽  
Vol 405-406 ◽  
pp. 62-68
Author(s):  
Ming Zhang ◽  
Feng Xing ◽  
Liang Peng Deng ◽  
Zheng Liang Cao ◽  
Zhan Huang

Reactive powder concrete (RPC) is a new kind of material with very high mechanical behavior and durability, however, high cost and complex procedure to make RPC result in hardly apply to engineering in large scale. a new low-cost RPC that compressive strength exceeds 130MPa was prepared with the replacement of quartz sand, crushed quartz and partial of silica fume by fly ash, slag and natural fine aggregate in the paper. Manhole cover that made from the low-cost RPC can meets the requirements of different situations, such as special road, motorway, etc.


2020 ◽  
Vol 857 ◽  
pp. 39-47
Author(s):  
Shatha D. Mohammed ◽  
Hadeel K. Awad ◽  
Rawaa K. Aboud

Reactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and 90 days. The outcomes of the experimental works improved that using porcelain aggregate as a partial replacement had an advanced effect on the compressive strength for all the adopted percentages and for all the studied curing ages. The maximum modification that’s obtained in case of porcelain aggregate was (24.14) % at age (90) days for 20% replacement. Using glass waste caused an increase in the overall values of the compressive strength for all the adopted replacements with less efficient than porcelain to reached (20.69) % at age (90) days for 20% replacement. Regarding the granular activated carbon, only (10%) replacement had a positive influence on the compressive strength to reached (13.16) % while the others caused a reduction in the compressive strength reached to (29.13)% for 20% replacement.


2021 ◽  
Vol 2 (1) ◽  
pp. 7-12
Author(s):  
Mounira Chadli

Reactive Powder Concrete (RPC) currently represents the family of cementitious matrix materials with properties the most exceptional mechanics and durability. This study aims to investigate the physico-mechanical properties, and the durability in a sulphated environment of a reactive powder concrete using materials available in our region, we have integrated materials rich in silica (slag, silica fume and crushed quartz) in Portland cement with 15, 23 and 25%, respectively. After The remove of the specimens from the mold and place the RPC in the curing box under steam curing conditions of 90 ° C for 72h, let them cool naturally for 24 h, the test pieces are immersed in water at 20 ° C, the specimens are broken in flexion and compression. From this study we can make the following conclusions: The incorporation of additions increases the compressive and flexural tensile strengths, which gives an improvement in the compactness of the mixtures by the pozzolanic effect of these last, by removing the particle size phase in the RPC and the affluence of dune sand (southern Algeria) and slag (industrial waste from the iron ore blast furnace), because Na2SO4 has a major effect on the compressive strength notably for non-fibrous formulations. NaOH improve the compressive strength for all formulation.


2016 ◽  
Vol 249 ◽  
pp. 108-111
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

Reactive powder concrete (RPC) is cement composite which is characterized by an absence of coarse aggregate. That resulted in a greater homogeneity of the mixture and thus also in a higher compressive strength. On the other side, the absence of coarse aggregate and typically a large volume of the paste lead to the deterioration of some of the properties of concrete. This paper deals with the relationship between maximum aggregate size and flexural strength of the reactive powder concrete without dispersed reinforcement. Quartz sand with maximum grain size of 1, 2 and 4 mm was used for the experiments. The flexural strength was measured through the four-point bending test on prisms 100 x 100 x 400 mm. Further, the quartz powder and ground granulated blast furnace slag were used as addition and compared with each other. The results of the experiments showed that the flexural strength grows with decreasing aggregate size. This tendency was observed in mixtures with quartz powder and also with ground granulated blast furnace slag. On the contrary, the compressive strength was independent on aggregate size, but dependent on the type of used addition.


2006 ◽  
Vol 302-303 ◽  
pp. 405-410 ◽  
Author(s):  
Feng Xing ◽  
Li Dong Huang ◽  
Zheng Liang Cao ◽  
Liang Peng Deng

Based on experiments, the effect of various types and content of mineral admixtures and steel fiber on flexural strength and compressive strength of reactive powder concrete (RPC) have been studied. The low-cost green RPC is made with the replacement of quartz sand, quartz powder and partial silica fume by natural fine aggregate and fly ash. The preparation techniques of RPC was also improved.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
E. Sutandar ◽  
Setya Budi ◽  
F. Juniardi

The most popular building material today is concrete. Concrete is used for buildings, industrial structures, bridges, railroad sleepers, roads, dams and more. Along with the development of concrete technology is increasingly developing and innovative so as to achieve better characteristics, cheaper prices and environmentally friendly. In the early days of the development of concrete it is explained to us about the origin from ancient times to civilization to the present century of its development. In current developments, concrete already has a very high compressive strength up to 200-800 MPa, this is also called Ultra Hight Concrete (UHC). It is developed by the Reactive Powder concrete (RPC) method. Where in the research conducted, the manufacture of reactive material, namely Reactive Powder concrete (RPC) was given with a compressive strength of up to 52 MPa. The components of the RPC mixture consist of cement, fine aggregate, silica fume, superplasticizer and water. To produce a compressive strength of 52 MPa, the composition of the mixture used previous research. Detailed RPC concrete mix proportions are given in this study. Preparation and testing of materials are made in the laboratory of the Faculty of Civil Engineering in Untan. The results that will be obtained are the physical and mechanical properties of RPC Concrete. As previously explained, the manufacture of RPC concrete requires basic ingredients that include cement, fine aggregate, silica fume, superplasticizer and water mixed together. Of course, with basic ingredients with good and correct composition, the physical and mechanical properties of RPC concrete will reach the planned quality. Cement sold in the market today has PPC and PCC types. Therefore, the cement which is a binder of powder materials into a solid one plays a very important role in the formation of the best physical and mechanical properties of RPC concrete. With cement as a binding material, it is certain that the strength of RPC concrete is determined by the binding capacity of the type of cement to be used, thus RPC concrete will be obtained according to the planned quality of the plan. From the cement brands on the Indonesian market consisting of PPC and PCC cement types, it can be concluded that one of the cements using the PCC type cement brand has better physical and mechanical properties than the PPC type cement brand. And all brands of cement with PCC type produce compressive strength > 52 MPa. So, in the manufacture of RPC concrete it is recommended to use a cement brand with PCC type.


Sign in / Sign up

Export Citation Format

Share Document