scholarly journals Akışkan Yatak Kaplama ve Gıda Uygulamaları

Author(s):  
Zeynep Atak ◽  
Mehmet Koç ◽  
Figen Kaymak-Ertekin

There are various food-processing technologies with the aim of protecting foodstuffs from environmental factors and increasing their shelf life. One of these is encapsulation technology, which has recently been used with an increased interest. With the fluidized bed coating, which is one of the physical methods used for encapsulation, the solid core materials are fluidized via the air stream and a film layer is formed on the surface of the core material with the coating material. The applicability of the fluid bed coating technique, as well as particulate properties, is significantly influenced by process variables used in the system, environmental variables and thermodynamic factors. The release characteristics of capsules formed during the process can be changed by various mechanisms such as heating, dissolution, mechanical or chemical fracture etc. and controlled release can be achieved. The fluidized bed coating method not only has the advantage of controlled release but also provides a homogeneous powder product, reduction of fine particles, development of transport and storage facilities, protection of reactive components, and prevention unwanted taste and odour. In this study, researches on fluid bed coating mechanism, fluid bed coating systems and applications of fluid bed systems in the food industry have been reviewed.

Author(s):  
М. Б. Демчук ◽  
С. М. Гуреєва ◽  
Т. А. Грошовий

<p align="center"><strong>MODERN STATE OF CREATION, PRODUCTION AND RESEARCH OF DRUGS</strong></p><p align="center"><strong>M</strong><strong>.</strong><strong>B</strong><strong>. </strong><strong>Demchuk</strong><strong>, </strong><strong>S</strong><strong>.</strong><strong>M</strong><strong>. </strong><strong>Gureyeva</strong><strong><sup>1</sup></strong><strong>, </strong><strong>T</strong><strong>.</strong><strong>A</strong><strong>. </strong><strong>Hroshovyi</strong><strong></strong></p><p>TernopilStateMedicalUniversityby I.Ya. Horbachevsky</p><p><sup>1</sup>JSC “Farmak”</p><p><strong>Noti</strong><strong>ce</strong><strong> 19.</strong> The current state of development and research of multiple unit pellet systems.</p><p><strong>Summary: </strong>the literature on technological aspects of creations of pellets, features of compression pellet to obtain multiple unit pellet systems are summarized<strong>.</strong></p><p><strong>Keywords: </strong>pellets, methods of pellets, pellet pressing, multiple unit pellet systems.</p><p><strong>Introduction. </strong>Oral modified-release multiple-unit dosage forms have always been more effective therapeutic alternative to conventional or immediate release single-unit dosage forms. With regards to the final dosage form, the multiparticulates are usually formulated into single-unit dosage forms such as filling them into hard gelatin capsules or compressing them into tablets.</p><p>Pelletization is a technique that enables the formation of spherical beads or pellets with a mean diameter usually ranging from 0.5 to2.0 mm. These pellets can evantually be coated and very often used in controlled-release dosage forms. The use of pelletization and pellets leads to an improvement in the flowability, appearance and mixing properties, thus avoiding excessive dust and reducing segregation and, generally, eliminating undesirable properties and improving the physical or chemical properties of fine powders.</p><p>The pharmaceutical industry has developed a great interest in pelletization due to a variety of reasons:</p><p>– prevention of segregation of co-agglomerated components, resulting in an improvement of the uniformity of the content;</p><p>– prevention of dust formation;</p><p>– increasing bulk density and decreasing bulk volume;</p><p>– the defined shape and weight improves the appearance of the product;</p><p>– improvement of the handling properties, due to the free-flowing properties;</p><p>– improvement of the hardness and friability of pellets;</p><p>– controlled release application of pellets due to the ideal low surface area-to-volume ratio that provides an ideal shape for the application of film coatings.</p><p>Pellets are prepared by different techniques, such as extrusion and spheronisation, rotogranulation, solution, suspension or powder layering, spray-drying or spray-congealing.</p><p>Extrusion / spheronisation is a multistage process for obtaining pellets with uniform size from wet granulates (extrudates). The process is more labour-intensive and more expensive than the conventional wet-granulation technique, as its use should be limited only to the production of spherical pellets for controlled release of drugs.</p><p>The fluid-bed granulation consists in the spraying of a granulation solution onto the suspended particles, which then are dried rapidly in the hot air stream.</p><p>Rotogranulation is one of the most recent methods for the production of spheroids. The single-unit spheronizing system can be described using terms like centrifugal granulator, rotary fluidized-bed granulator, rotary fluid bed, rotary processor or rotor granulator.</p><p>Layering a suspension or a solution of a drug on a seed material (usually, a coarse crystal or nonpareil) can produce pellets that are uniform in size distribution and generally posess very good surphace morphology. These characteristics are especially desirable when pellets will be coated for the purpose of achieving a controlled release.</p><p>Dry powder layering is similar to the solution or suspension layering. Instead of these dispersions, the layering is performed using a drug powder.</p><p>Spray-drying represents another process with limited application in the development of pharmaceutical pelletized products, based on globulation. During spray-drying, a drug solution or suspension is sprayed, with or without excipients, into a hot-air stream, generating dry and highly spherical particles.</p><p>Spray-congealing (spray-chilling) is a technique similar to spray-drying. Spray-congealing is a process in which a drug is allowed to melt, disperse or dissolve in hot melts of gums, waxes, fatty acids or other melting solids. The dispersion is then sprayed into a stream of air and other gases with a temperature below the melting point of the formulation components.</p><p><strong>Conclusions.</strong> The basic requirements and approaches to development multiple unit pellet system, aspects and examples receipt of pellets and tablets based on them are described.</p>


1995 ◽  
Vol 85 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Atsushi Tsutsumi ◽  
Shoichi Nakamoto ◽  
Tomoko Mineo ◽  
Kunio Yoshida

Author(s):  
Suryadevara Vidyadhara ◽  
Talamanchi Balakrishna ◽  
MikkilineniBhanu Prasad ◽  
Reddyvalam LankapalliC Sasidhar ◽  
Pavuluri Trilochani

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1525
Author(s):  
Rongyi Zhang ◽  
Torsten Hoffmann ◽  
Evangelos Tsotsas

Fine particles are widely used in many industrial fields, and there are many techniques applied for these particles, like electroplating, and chemical and physical vapor deposition. However, in the food and pharmaceutical industries, most coating processes conducted with fluidized bed use core particles with a diameter larger than 200 μm, otherwise agglomerates are formed. This study contributes to the development of a new coating process for fine particles with diameters of around 50 μm. The innovation lies in the combined use of a Wurster fluidized bed and a novel aerosol atomizer. The feasibility of the operation is based on the application of the aerosol atomizer, which generates droplets smaller than 1 μm in diameter. A series of experiments with different coating solutions and glass beads in a 150 mm fluidized bed fed with droplet aerosol supplied from the cone chamber bottom is presented. The quality of the coating product is analyzed by scanning electron microscopy and CAMSIZER®. In this way, the influence of different conditions and core material properties on the product quality were determined. Experimental results showed the coating layer quality getting worse as coating solution viscosity became lower, meanwhile moderate process temperature was found to enhance coating layer formation and quality of that. It was also observed that lower aerosol feed rates help improve the yield of the process.


Author(s):  
Jiří Kolář ◽  
Pavel Kovačík ◽  
Tereza Choděrová ◽  
Zdeněk Grof ◽  
František Štěpánek

Sign in / Sign up

Export Citation Format

Share Document