scholarly journals Determining Chemical Composition and Rumen Degradation Characteristics of Different Chickpea (Cicer Arietinum L.) Lines Straw

Author(s):  
Numan Kılıçalp ◽  
Hatice Hızlı ◽  
Dürdane Mart

This study aimed to identfy chemical composition, ruminal degradation characeristics and metabolizable energy (ME) content of five different chickpea line and a check cultivar’s straw using nylon bag technique. Feed samples were incubated as three replicates of each fistulated Holstein heifer for 0, 8, 12, 24, 36, 48, 72 and 96 h. Degradation characteristics of dry matter (DM) and neutral detergent fiber (NDF) in rumen were determined by using this mathematical expression D=a+b(1-e-ct). Crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and ash contents of straw were ranged from 5.61 to 7.42%, 51.33 to 56.0%, 63.67 to 67.0%, and 8.0 to 9.0% respectively. Besides Rapidly soluble fraction (a), potantial degradability (a+b) and effective dry matter degradability (EDDM ) were ranged from 17.86 to 21.41, 54.40 to 59.43, 49.65 to 54.91% respectively. Estimated ME of chickpea entries straw were ranged from 5.96 to 7.37 MJ/kg. Metabolizable energy content of control chickpea cultivar was significantly higher than the other chickpea straw of lines. The research values of ME revealed that significant differences were determined among the lines in terms of energy content. In addition to, a strong relationship between straw NDF level and ME content were determined.

2015 ◽  
Vol 95 (4) ◽  
pp. 493-498 ◽  
Author(s):  
Tiago Neves Pereira Valente ◽  
Edenio Detmann ◽  
Cláudia Batista Sampaio

Valente, T. N. P., Detmann, E. and Sampaio, C. B. 2015. Review: Recent advances in evaluation of bags made from different textiles used in situ ruminal degradation. Can. J. Anim. Sci. 95: 493–498. Textile bags are used in the laboratory to analyze the indigestible contents (internal markers) of feedstuffs after in situ ruminal incubation. Information is needed on the rate and extent of degradation in the rumen using bags made from different materials. In situ techniques have been used extensively to measure the degradation of feedstuffs in the rumen. However, in situ techniques are prone to variability. This paper reviews the effects of particle size, the material from which bags are made, pore size, tensile strength of the bags, in situ estimation of the levels of indigestible compounds [indigestible dry matter (iDM), indigestible neutral detergent fiber (iNDF), and indigestible acid detergent fiber (iADF)], rumen degradation profiles, and the use of bags made from nylon (50 µm), F57 (Ankom®), and non-woven textile (100 g m−2).


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1247 ◽  
Author(s):  
Trinidad de Evan ◽  
Andrea Vintimilla ◽  
Eduarda Molina-Alcaide ◽  
María Ranilla ◽  
María Carro

The nutritive values for ruminants of cauliflower (CAU) and Romanesco (ROM) wastes (leaves, stems and sprouts) were assessed by analyzing their chemical composition, in vitro ruminal fermentation, and in vitro intestinal digestibility. In addition, the in vitro ruminal fermentation of diets containing increasing amounts of CAU was studied. The dry matter (DM) content of leaves, stems and sprouts of both vegetables was lower than 10%, but they contained high crude protein (CP; 19.9 to 33.0%) and sugar (16.3 to 28.7%) levels, and low neutral detergent fiber (21.6 to 32.3%). Stems and sprouts were more rapidly and extensively fermented in the rumen than leaves, but there were only minor differences the fermentation profiles of both vegetables. The estimated metabolizable energy content ranged from 9.3 (leaves) to 10.8 (sprouts) MJ/kg DM. The CP rumen degradability (12-h in situ incubations) was greater than 80.0% for all fractions, and the in vitro intestinal digestibility of CP ranged from 85.7 to 93.2%. The inclusion of up to 24% of dried CAU in the concentrate of a mixed diet (40:60 alfalfa hay:concentrate) increased the in vitro rumen fermentation of the CAU diet, but did not affect methane (CH4) production, indicating the lack of antimethanogenic compounds in CAU.


2015 ◽  
Vol 13 (2) ◽  
pp. e06SC01
Author(s):  
Ali Hatami ◽  
Daryoush Alipour ◽  
Fardin Hozhabri ◽  
Meisam Tabatabaei

<p>This study was conducted to evaluate the effects of ensiling pomegranate peel (PP) with different levels of polyethylene glycol (PEG) on its chemical composition, tannin content, <em>in vitro</em> gas production and fermentation characteristics. Fresh PP was chopped and ensiled in mini silos made of polyvinyl chloride tubing. Five levels of PEG were studied: 0 (control), 5, 10, 15, and 20% of fresh PP (dry matter basis). Total phenolics, total tannins, crude ash, crude protein, neutral detergent fiber and acid detergent fiber content and pH decreased with increasing PEG levels, whereas dry matter and non-fiber carbohydrates content, non-tannin phenols, lactic acid and ammonia concentrations and buffering capacity increased. The water soluble carbohydrates and ether extract concentrations were not influenced by the addition of PEG. The partitioning factor and efficiency of microbial biomass production were quadratically decreased (<em>p</em>=0.020 and <em>p</em>=0.032, respectively) as PEG inclusion increased, but the <em>in vitro </em>apparent dry matter disappearance did not differ among treatments. Compared to control, the <em>in vitro</em> true disappearance and <em>in vitro</em> fiber digestibility had a tendency to be higher in silages treated with PEG (<em>p</em>=0.081 and <em>p</em>=0.069, respectively). The metabolizable energy content and total volatile fatty acids concentration increased quadratically by PEG inclusion. The asymptotic gas production and rate of gas production were higher in PEG-treated silages. Overall, ensiling PP with PEG can improve the fermentation characteristics of this by-product.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 307-310
Author(s):  
G. Ganchev ◽  
А. Ilchev ◽  
А. Koleva

Abstract. The aim of the study was to determine the digestibility and energy content of Paulownia elongata S.Y.Hu leaves after leaf fall. Leaves together with petioles were dried at room temperature and milled with a roughage mill before feeding to animals. A classical digestion trial was performed, with three rams weighing 55.4kg on average, by determining the chemical composition of consumed feed, feed leftovers and excreted faeces. Digestibility was evaluated as difference in the amount of ingested nutrients and nutrients excreted with faeces and it was determined to be 50.72, 52.08, 31.63, 54.09, 55.15 and 56.06% for dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), crude fibre (CF) and nitrogen-free extract (NFE). The energy value for ruminants calculated on the basis of chemical composition and established digestibility was 8.29 MJ digestible energy (DE)/kg DM, 6.55 MJ metabolizable energy (ME)/ kg DM, 0.59 feed units for milk (FUM)/kg DM and 0.52 feed units for growth (FUG)/kg DM.


1992 ◽  
Vol 72 (4) ◽  
pp. 881-889 ◽  
Author(s):  
Z. Mir ◽  
P. S. Mir ◽  
S. Bittman ◽  
L. J. Fisher

The degradation characteristics of dry matter (DM), protein, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of corn–sunflower intercrop silage (CSS) and monoculture corn silage (CS) prepared from whole plants, harvested at two stages of maturity, were compared using eight mature rumen-cannulated steers. The degradation characteristics were determined by incubating the silages in nylon bags for up to 72 h in the rumen of animals fed the respective silages. The degradation characteristics determined for the silages were the soluble fraction, the insoluble but degradable fractions, the rate of degradation of the degradable fractions of silage DM and protein, and the in situ disappearance of NDF and ADF after 0.5 and 72 h of incubation. The rate of particulate passage from the rumen was determined using chromium-mordanted NDF of the four silages. Values were used to estimate effectively degraded DM and protein. The rates of DM and protein degradation were highest for late-cut CSS (6.3 and 6.0% h−1, respectively) and the least for late-cut CS (2.5 and 0.8% h−1, respectively). Averaged across stages of maturity, more (P < 0.05) DM and protein were effectively degraded with CSS (57.4 and 70.1%, respectively) than with CS (48.8 and 48.7%). Degradation of NDF in early-cut CSS was lower (P < 0.05) than in CS after 72 h of incubation. ADF disappearance from all of the silages after 72 h of incubation was similar. Ruminal degradation of DM and protein in CSS was greater than in CS, which may affect efficiency of utilization of CSS. Key words: Degradation rate, effective degradability, corn silage, intercropped corn–sunflower, steers


2019 ◽  
Vol 40 (6Supl3) ◽  
pp. 3605
Author(s):  
Ernestina dos Ribeiro Santos Neta ◽  
Luis Rennan Sampaio Oliveira ◽  
Rafael Mezzomo ◽  
Daiany Íris Gomes ◽  
Janaina Barros Luz ◽  
...  

This study evaluated the chemical composition and ruminal degradability of dry matter (DM), neutral detergent fiber corrected for ash and protein (NDFap) and crude protein (CP) in byproducts of African oil palm (palm cake, kernel or fiber), macaúba (pulp cake and kernel cake), acai (acai fruit), babassu (kernel cake) and pineapple (peel, crown and bagasse silage). Nineteen rumen-fistulated sheep were kept in individual stalls, receiving a daily diet composed of elephant grass silage and corn and soybean concentrate. After preparation in nylon bags, the byproduct samples were incubated for 0, 3, 6, 12, 16, 18, 24, 48, 72, 96, 120 and 144 hours, with three replicates of each ingredient per incubation time. The divergence between the protein nutritional value and energy nutritional value, based on discriminatory variables between groups, was estimated by cluster analysis. The effective degradability of DM, NDFap and CP for the different byproducts was, respectively, 35.9, 26.9 and 59.0% for palm cake; 48.3, 34.3 and 76.4% for palm kernel; 21.1, 6.6 and 50.3% for palm fiber; 34.3, 15.0 and 52.8% for macaúba pulp cake; 58.1; 63.0 and 51.6% for macaúba kernel cake; 49.7, 49.6 and 41.8% for babassu cake; 53.4, 40.5 and 79.8% for pineapple bagasse silage; and 21.3, 17.0 and 38.9% for acai fruit. Based on their NDFap and CP characteristics, the feeds were clustered in up to four different groups.


2021 ◽  
Vol 51 (3) ◽  
pp. 191-198
Author(s):  
Juliana Schuch PITIRINI ◽  
Rosana Ingrid Ribeiro dos SANTOS ◽  
Francy Manoely da Silva LIMA ◽  
Ilano Silva Braga do NASCIMENTO ◽  
Jehmison de Oliveira BARRADAS ◽  
...  

ABSTRACT The use of cassava root silage for animal feeding is a suitable option for farmers who grow cassava as an alternative product and for cattle ranchers who have to deal with high prices of corn. Our objective was to determine the effects of cassava genotypes and the correction of soil acidity on the microbial population, fermentation characteristics, chemical composition, aerobic stability and losses of cassava root silage. We used a 2 × 3 factorial design in completely randomized blocks, with four replications. We evaluated two cassava genotypes (Caeté and Manteiguinha) and three methods of soil acidity correction (lime, gypsum, and lime+gypsum). The roots were harvested 11 months after planting, ensiled in PVC silos, and stored for 45 days. No interaction was observed between genotypes and soil acidity correction for any of the evaluated parameters. The silage of Caeté genotype showed the highest concentration of dry matter (421 g kg-1 fresh matter) and non-fibrous carbohydrates (893 g kg-1 dry matter), and the lowest concentrations of neutral detergent fiber (37.1 g kg-1 dry matter) . No significant differences were observed among treatments for lactic acid bacteria, yeast and mold counts in silages. Both genotypes resulted in silages with an adequate fermentation profile and considerably high aerobic stability, but with high effluent loss. The Caeté genotype showed to be potentially better for silage production due to its higher dry matter recovery. Due to the high level of effluent loss, it is recommended to test the effect of a moisture-absorbing additive during the ensiling process of these cassava roots.


Author(s):  
Quanfeng Li ◽  
Jianjun Zang ◽  
Dewen Liu ◽  
Xiangshu Piao ◽  
Changhua Lai ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Vanessa Peripolli ◽  
Ênio Rosa Prates ◽  
Júlio Otávio Jardim Barcellos ◽  
Cássio André Wilbert ◽  
Cláudia Medeiros Camargo ◽  
...  

The interest in using crude glycerol in animal feeding has reemerged due to its increasing availability and favorable price resulting from the expansion of biofuel industry. The objective of the present study was to evaluate the effects of substituting corn for crude glycerol at different levels in the diet on ruminal fermentation using in-vitro true digestibility parameters. The experimental treatments consisted of substituting corn for liquid crude glycerol (0; 4; 8 and 12%) in dry matter basis. Diets consisted of 60% alfalfa hay and 40% corn and glycerol substituted the corn in the diet. In addition to the 48 hours traditionally applied in digestibility assays, different in-vitro digestibility times were used (0; 4; 8; 16; 48, 72 and 96 hours) in order to study digestion kinetics. The dietary corn substitution for increasing crude glycerol levels did not affect ammonia nitrogen content, metabolizable energy content, in-vitro digestibility of organic matter and neutral detergent fiber, nor ruminal degradation parameters. However this by-product of biodiesel production may be tested in-vivo as an alternative energy feedstuff in ruminant diets.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Eric Hatungimana ◽  
Tess C Stahl ◽  
Peter S Erickson

Abstract The objective of this study was to evaluate the growth performance and apparent total tract nutrient digestibility of Holstein heifers limit-fed diets containing different amounts of wet brewer’s grains (WBG). A 12-wk randomized complete block study was conducted using 30 yearling Holstein heifers [378 ± 27 d of age, and body weight (BW) of 357.8 ± 27.6 kg (mean ± SD)]. Treatments were 0%, 10% and 20% of WBG on a dry matter (DM) basis and diets were formulated to be limit-fed for dry matter intake (DMI) at 2.35% of BW and provided 15% crude protein (CP) and 2.27 Mcal metabolizable energy/kg of DM. Dry matter intake was recorded daily, while BW and skeletal measurements were measured every 2 wk. During week 12, fecal samples were collected directly from the rectum over four consecutive days and composited by heifer to determine apparent total tract nutrient digestibility using acid detergent insoluble ash as a marker. Data were analyzed using the MIXED procedure of SAS. Dry matter intakes, BW, and average daily gain were not different among treatments (P = 0.2, P = 0.4, and P = 0.6, respectively). Dry matter intakes ranged from 8.6 to 9.0 kg/d. Average BW were 404.4, 411.5, and 409.3 kg for heifers fed the 0%, 10%, and 20% WBG diets, respectively. Average daily gains were 1.03, 1.04, and 0.96 kg/d for heifers fed the 0%, 10%, and 20% WBG diets respectively. Skeletal measurements and body condition scores (BCS) were not different among treatments except for the change in heart girth (P &lt; 0.01) and initial BCS (P &lt; 0.01). Apparent total tract digestibilities of DM, organic matter, CP, fat, and hemicellulose were greater or tended to be greater in heifers fed 0% and 20% WBG treatments than heifers fed 10 % WBG (P = 0.04, P = 0.04, P = 0.06, P = 0.06, and P = 0.01, respectively). Neutral detergent fiber, acid detergent fiber, and fat digestibilities were similar among treatments (P = 0.2, P = 0.3, and P = 0.3, respectively). During the digestibility phase, DMI tended to be greater (P = 0.08) for the 10% WBG treatment. These results demonstrate that limit-feeding heifers with diets containing up to 20% WBG could replace soybean- and corn-based concentrates in diets without adverse consequences to the heifer growth performance.


Sign in / Sign up

Export Citation Format

Share Document