scholarly journals Surface Improvement and Durability of Case-Carburized Gear Tooth (3rd Report). Effects of Tooth Surface Finish upon Oil Film Formation.

2000 ◽  
Vol 66 (9) ◽  
pp. 1441-1445
Author(s):  
Shigeru HOYASHITA ◽  
Jun IWATA
2021 ◽  
pp. 1-27
Author(s):  
Junichi Hongu ◽  
Ryohei Horita ◽  
Takao Koide

Abstract This study proposes a modification of the Matsumoto equation using a directional parameter of tooth surfaces to adapt various gear finishing processes. The directional parameters of a contact surface, which affect oil film formations, have been discussed in the field of tribology; but this effect has been undetermined on the meshing gear tooth surfaces having directional machining marks. Thus, this paper investigates the relationship between the gear frictional coefficients and the directional parameters (based on ISO25178) of their tooth surfaces with the various finishing processes; and modifies the Matsumoto equation by introducing a new directional parameter to augment the various gear finishing processes. Our findings indicate that through optimizing the coefficient of the correction term the include the new directional parameter, the calculated friction values using the modified Matsumoto equation correlate more highly to the experimental friction values than that using the unmodified Matsumoto equation.


2013 ◽  
Vol 655-657 ◽  
pp. 573-577
Author(s):  
Jin Ke Jiang ◽  
Zong De Fang ◽  
Xian Long Peng

Considering the gap of the contact line of modified involute cylindrical gears influencing on loads, oil film thickness, the friction coefficient was determined on the basis theory of TCA、 LTCA and EHL. so oil film thickness and friction coefficient corresponded with loads on contact line were dispersed, which was used to computed discrete temperature according to the Blok flash temperature formula. and an approach of modified tooth surface optimum design based on the minimum flash temperature was proposed: the modified tooth surfaces was defined as a sum of theoretical tooth and cubic B-spline fit surface based on the uniform grid points created by double parabolas and a straight line and whose normal vector was deduced, besides, used genetic algorithm to optimize the parameter of curve, and get the best modified gear tooth surfaces. the results shows that oil film is thicker in engaging-out, coefficient of friction is contrary, which is responsible for lower flash temperature in engaging-in, besides the flash temperature has little changes in the single tooth meshing zone, and helical gear has a lower flash temperature than spur gear due to higher overlap ratio.


1997 ◽  
Vol 63 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Shigeru HOYASIIITA ◽  
Munetoh HASIIIMOTO ◽  
Akira YAMAMOTO ◽  
Kazuhiro TANAKA ◽  
Tomohiro MATSUNOSITA

1999 ◽  
Vol 122 (1) ◽  
pp. 354-360 ◽  
Author(s):  
R. D. Britton ◽  
C. D. Elcoate ◽  
M. P. Alanou ◽  
H. P. Evans ◽  
R. W. Snidle

A special four-gear rig has been used to determine gear tooth frictional losses at loads and speeds representative of engineering practice using a gas-turbine engine oil. The effect of surface finish has been investigated by comparing the frictional losses of conventionally ground teeth (with roughness average, Ra, of approximately 0.4 μm) with those of teeth which were superfinished to approximately 0.05 μm Ra. It was found that superfinishing resulted in a reduction of friction of typically 30 percent with correspondingly lower tooth surface temperatures under the same conditions of load and speed. Film generation and frictional traction in the experiments were simulated theoretically using a thin film non-Newtonian micro-elastohydrodynamic lubrication solver, and encouraging agreement between friction measurements and theoretical predictions was obtained. [S0742-4787(00)04701-9]


1976 ◽  
Vol 98 (2) ◽  
pp. 626-631 ◽  
Author(s):  
E. J. Wellauer ◽  
G. A. Holloway

The method and assumptions used for the application of EHD theory to the calculation of gear tooth oil film thicknesses for the design and analysis of industrial gear drives is presented. A nomograph, utilizing readily available gear geometry, operational, and lubricant parameters, is illustrated which allows rapid determination of calculated gear tooth oil film thicknesses for a wide range of gear drive conditions. Gear tooth surface distress is related to the specific film thickness, λ, the ratio of calculated oil film thickness to the magnitude of the composite surface texture. The term “surface texture” is introduced for gear contacts to indicate that surface attributes coarser than roughness importantly relate to tooth surface distress, but a sophisticated method for its quantitative assessment has not been developed. Data from several hundred petroleum lubricated laboratory tests and closely followed field applications which include through hardened gears of 1 in. to 15 ft in diameter are used to correlate specific film thickness and gear tooth surface distress. Curves are given to predict the probability of occurrence of such distress over the range of pitch line velocities of 4–35,000 ft/min.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 747
Author(s):  
Taewook Ha ◽  
Dong Kyu Kim

The oil injection method was studied to maximize the cooling performance of an electric vehicle motor with a hairpin winding. The cooling performance of the motor using the oil cooling method is proportional to the contact area of the oil and the coil. A numerical analysis was conducted to examine the effect of the spray nozzle type on the oil flow. The dripping nozzle forms the thickest oil film on the coil, making it the most effective for cooling of hairpin-type motors. Subsequently, an experimental study was conducted to optimize the nozzle diameter and number of nozzles. When the inlet diameter and number was 6.35 mm and 6, the oil film formation rate was 53%, yielding the most uniform oil film. Next, an experiment was performed to investigate the effects of the oil temperature and flow rate on the oil flow. The oil film formation rate was the highest (83%) when the oil temperature was 40 °C and the flow rate was 6 LPM.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


Sign in / Sign up

Export Citation Format

Share Document