scholarly journals Influence of Leaf Spring Structure Milling Tool on Chipping Resistance in Titanium Alloy Milling Process

2019 ◽  
Vol 85 (5) ◽  
pp. 447-454
Author(s):  
Kazunori FUJISE ◽  
Keita MIZUNO ◽  
Fumihiro ITOIGAWA
2020 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Wenshuo Ma ◽  
Jingjun Yu ◽  
Yiqing Yang ◽  
Yunfei Wang

Milling tools with a large length–diameter ratio are widely applied in machining structural features with deep depth. However, their high dynamic flexibility gives rise to chatter vibrations, which results in poor surface finish, reduced productivity, and even tool damage. With a passive tuned mass damper (TMD) embedded inside the arbor, a large length–diameter ratio milling tool with chatter-resistance ability was developed. By modeling the milling tool as a continuous beam, the tool-tip frequency response function (FRF) of the milling tool with TMD was derived using receptance coupling substructure analysis (RCSA), and the gyroscopic effect of the rotating tool was incorporated. The TMD parameters were optimized numerically with the consideration of mounting position based on the maximum cutting stability criterion, followed by the simulation of the effectiveness of the optimized and detuned TMD. With the tool-tip FRF obtained, the chatter stability of the milling process was predicted. Tap tests showed that the TMD was able to increase the minimum real part of the FRF by 79.3%. The stability lobe diagram (SLD) was predicted, and the minimum critical depth of cut in milling operations was enhanced from 0.10 to 0.46 mm.


2014 ◽  
Vol 625 ◽  
pp. 134-139
Author(s):  
Takenori Ono

This paper introduced about the in-process vibration testing method for small diameter endmill. By this method, the natural frequency and modal parameters such as mass, damping, and stiffness of the milling tool can be determined in the milling process. An oscillation of the vibrator is controlled by the function generator to apply the impact force at the appropriate cutting period. The measurement setup can determine the compliance curve by the measurement signals of the exiting force and tool deformation. To evaluate the feasibility of the new method, vibration tests were performed on a square endmill which has the diameter of 4 mm in the milling on brass material. Results of vibration tests show that modal parameters of the specific vibration mode can be determined by the new developed method.


2013 ◽  
Vol 773-774 ◽  
pp. 370-376
Author(s):  
Muhammad Adib Shaharun ◽  
Ahmad Razlan Yusoff ◽  
Mohammad S. Reza

Titanium is difficult-to-cut materials due to its poor machinability and thermal conductivity when machining at high cutting speed. To overcome this machining titanium alloy problem, this study in interaction between machining structural system and the cutting process are very important. One of the main problems in the cutting process is chatter vibration. Due to chatter problem, the mechanism to suppress chatter named, process damping is a useful method can be manipulated to improve the limited productivity of titanium machining at low speed machining in milling process. In the present study, experiment are conducted to evaluate and study the process damping mechanism in milling using different types of variable tools geometries. These tools are variable he-lix/uniform pitch, variable pitch/uniform helix and variable helix and pitch and uniform helix/pitch. The result showed that the variable helix and pitch tools is very significantly improve process damping performance in machining titanium alloy compare to traditional of regular tools and other irregular tools.


2015 ◽  
Vol 809-810 ◽  
pp. 890-895
Author(s):  
Ionuţ Ghionea ◽  
Adrian Ghionea ◽  
Saša Ćuković ◽  
Nicolae Ionescu

This paper presents an applicative methodology of parametric computer aided design using the CATIA v5 software to model and assembly a modular fixture device. The device is then used in the orientation and clamping a part of type casing cover which has a face machined by milling. Having a constructive solution of the fixture device, the next step is to simulate a milling process through a FEM analysis to identify the working conditions: milling tool diameter, number of teeth, cutting forces, required power of the machine tool etc. Some parameters were chosen according to various tools manufacturers catalogues and the cutting force components were determined experimentally in laboratory conditions. The analysis results show that in the FEM simulated milling process, in all the fixture device parts, some tensions cause displacements that have an influence over the casing cover surface roughness.


2011 ◽  
Vol 10 (01) ◽  
pp. 101-108 ◽  
Author(s):  
XIULIN SUI ◽  
IMRE HORVATH ◽  
JIATAI ZHANG ◽  
PING ZHANG

Ball-end milling tools have been widely used in machining of complex freeform surfaces. The precision and efficiency of ball-end milling process can be improved by an accurate modeling of the tools, the tools' paths and the machining conditions. However, only rough geometric models have been applied so far, which do not consider the machining conditions and the physical changes. To achieve the best results, an accurate modeling of the cutting edge and the physical behavior of the entire cutter is needed. This paper proposes an articulated model that enumerates both the geometric characteristics and the physical effects acting on the cutting edge-segment of a ball-end milling cutter. The model considers the deformations caused by the milling forces, vibration, spindle eccentricity, together with thermal deformation and wear of the cutter. The mathematical description of the behavior has been transferred into a computational model. The pilot implementation has been tested in a practical application. The first findings show that the proposed theoretical model and implementation provide sufficiently precise information about the behavior of the cutter in virtual simulations; hence it can be the basis of a fully fledged and more efficient planning of milling processes.


2015 ◽  
Vol 656-657 ◽  
pp. 308-313
Author(s):  
Makoto Nikawa ◽  
Masato Okada

The machinability of difficult-to-cut materials was evaluated during the milling process using water soluble and water insoluble cutting oils. The fundamental characteristics of the cutting oils were investigated by the pin-on-disk abrasion test. The machinability was evaluated by the tool flank wear, chip geometry, cutting force, and tool-flank temperature during milling. The tool-flank temperature was measured using a two-color pyrometer with an optical fiber. Workpiece materials consisting of stainless steel and a titanium alloy were used along with commercial cutting oils. From the results of the pin-on-disk abrasion test, the friction coefficients resulting from the application of various cutting oils to the face of the titanium alloy and WC-based hard metal were approximately the same value. The water soluble cutting oil had a higher coolability than the water insoluble cutting oil. From the results of the milling test, the water insoluble oil had a higher machinability of the difficult-to-cut materials than the water soluble cutting oil. The tool-flank temperature during wet cutting of the difficult-to-cut materials decreased by approximately 50–80 °C compared to dry cutting. However, no differences in the tool-flank temperature were observed between the water soluble and water insoluble cutting oils. The cutting force during wet cutting increased compared to dry cutting, most likely because the heating during cutting was reduced by supplying the cutting oil, and the material at the cutting point did not cause heat softening.


Author(s):  
Xiaohong Lu ◽  
Zhenyuan Jia ◽  
Shengqian Liu ◽  
Kun Yang ◽  
Yixuan Feng ◽  
...  

Abstract In the micro-milling process, the minimization of tool chatter is critical for good surface finish quality. The analysis of chatter requires an understanding of the milling tool as well as the dynamics of milling system structure. Frequency response function (FRF) at the micro-milling tool point reflects dynamic behavior of the whole micro-milling machine–spindle–tool system. However, the tool point FRF of micro-milling cannot be obtained directly through the hammering test. To solve the problem, the authors get the FRF of the spindle system based on the rotating Timoshenko beam theory and the receptance coupling substructure analysis (RCSA), and the bearing characteristics are added into the spindle model through structural modification. Then, the centrifugal force and gyroscopic effect caused by the high-speed rotation of the micro-milling spindle are considered to better simulate the real scenario and increase the accuracy of modal parameters. The method has general usage and can be applied to all the micro-milling tools under which only the spindle dimension, bearing characteristics, and contact parameters need to be changed.


Sign in / Sign up

Export Citation Format

Share Document