scholarly journals Crack Formation with Gold Inflow at Glass Surface by Voltage Application

2022 ◽  
Vol 88 (1) ◽  
pp. 108-116
Author(s):  
Hirofumi KAWAMURA ◽  
Souta MATSUSAKA ◽  
Hirofumi HIDAI ◽  
Akira CHIBA ◽  
Noboru MORITA
2021 ◽  
Vol 141 (1) ◽  
pp. 21-26
Author(s):  
Hideaki Fukuda ◽  
Kenta Yamamura ◽  
Issei Fujita ◽  
Ryutaro Kusa ◽  
Yasushi Yamano

2008 ◽  
Author(s):  
Wei Guo ◽  
Zeng Bo Wang ◽  
Lin Li ◽  
Zhu Liu ◽  
Boris Luk’yanchuk ◽  
...  

2018 ◽  
Vol 84 (12) ◽  
pp. 68-72
Author(s):  
A. B. Maksimov ◽  
I. P. Shevchenko ◽  
I. S. Erokhina

A method for separating the work of impact into two parts - the work of the crack nucleation and that of crack growth - which consists in testing two samples with the same stress concentrators and different cross-sectional dimensions at the notch site is developed. It is assumed that the work of crack nucleation is proportional to the width of the sample face on which the crack originates and the specific energy of crack formation, whereas the work of the crack growth is proportional to the length of crack development and the specific crack growth energy. In case of the sample fracture upon testing, the crack growth length is assumed equal to the sample width. Data on the work of fracture of two samples and their geometrical dimensions at the site of the notch are used to form a system of two linear equations in two unknowns, i.e., the specific energy of crack formation and specific energy of crack growth. The determined specific energy values are then used to calculate the work of crack nucleation and work of crack growth. The use of the analytical method improves the accuracy compared to graphical - extrapolative procedures. The novelty of the method consists in using one and the same form of the notch in test samples, thus providing the same conditions of the stress-strain state for crack nucleation and growth. Moreover, specimens with different cross-section dimensions are used to eliminate the scale effects. Since the specific energy of the crack nu-cleation and specific energy of the crack growth are independent of the scale factor, they are determined only by the properties of the metal. Introduction the specific energy of crack formation and growth makes possible to assign a specific physical meaning to the fracture energy.


2020 ◽  
Author(s):  
Farhan Ashraf ◽  
Andrea Cini ◽  
Gustavo M. Castelluccio

2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


2016 ◽  
Vol 292 ◽  
pp. 66-69 ◽  
Author(s):  
Maohui Bai ◽  
Zhixing Wang ◽  
Xinhai Li ◽  
Huajun Guo ◽  
Zhenjiang He ◽  
...  

2021 ◽  
Vol 31 (5) ◽  
pp. 1350-1362
Author(s):  
Yong HU ◽  
Xiao-kang YANG ◽  
Wen-jiang KANG ◽  
Yu-tian DING ◽  
Jia-yu XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document