Wetting of glass surface using natural surfactants

2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 787 ◽  
Author(s):  
Federico Veronesi ◽  
Giulio Boveri ◽  
Mariarosa Raimondo

The search for surfaces with non-wetting behavior towards water and low-surface tension liquids affects a wide range of industries. Surface wetting is regulated by morphological and chemical features interacting with liquid phases under different ambient conditions. Most of the approaches to the fabrication of liquid-repellent surfaces are inspired by living organisms and require the fabrication of hierarchically organized structures, coupled with low surface energy chemical composition. This paper deals with the design of amphiphobic metals (AM) and alloys by deposition of nano-oxides suspensions in alcoholic or aqueous media, coupled with perfluorinated compounds and optional infused lubricant liquids resulting in, respectively, solid–liquid–air and solid–liquid–liquid working interfaces. Nanostructured organic/inorganic hybrid coatings with contact angles against water above 170°, contact angle with n-hexadecane (surface tension γ = 27 mN/m at 20 °C) in the 140–150° range and contact angle hysteresis lower than 5° have been produced. A full characterization of surface chemistry has been undertaken by X-ray photoelectron spectroscopy (XPS) analyses, while field-emission scanning electron microscope (FE-SEM) observations allowed the estimation of coatings thicknesses (300–400 nm) and their morphological features. The durability of fabricated amphiphobic surfaces was also assessed with a wide range of tests that showed their remarkable resistance to chemically aggressive environments, mechanical stresses and ultraviolet (UV) radiation. Moreover, this work analyzes the behavior of amphiphobic surfaces in terms of anti-soiling, snow-repellent and friction-reduction properties—all originated from their non-wetting behavior. The achieved results make AM materials viable solutions to be applied in different sectors answering several and pressing technical needs.


2020 ◽  
Vol 55 (3) ◽  
pp. 310-326
Author(s):  
Mohammad Ramezanianpour ◽  
Muttucumaru Sivakumar ◽  
Natalie Osborn ◽  
Ying Zhang ◽  
Hakim Kawa

Abstract The wetting phenomenon is a major problem in the membrane distillation (MD) process, and it is the main reason that limits MD being used in wastewater reclamation. Active surfactant in the detergents reduces the contact angle between the liquid and the hydrophobic membrane surface, which could result in wetting. Extensive laboratory research was conducted using commercial hydrophobic flat-sheet membranes to identify the impact of anionic surfactants and surface tension forces on these membranes. The aim of this paper is to find a suitable membrane for pure water production from greywater using MD, as well as to provide a relationship between surfactant concentration and the contact angle for different types of membrane. The absorbance of each sample was measured by a spectrophotometer prior to the contact angle test on four different types of hydrophobic membranes. It was concluded that the polypropylene membrane would be unsuitable for the treatment of greywater directly due to the loss of surface tension forces upon the addition of an anionic surfactant. However, the polytetrafluoroethylene membrane could be effective in this process while the concentration of surfactant in the feed source is kept constant. The results from the experimental tests proposed a relationship between the contact angle of a water droplet on the surface of a flat-sheet membrane and the concentration of surfactant in the solution.


2020 ◽  
Author(s):  
Xiangwen Wang ◽  
Dimitrios Toroz ◽  
Seonmyeong Kim ◽  
Simon Clegg ◽  
Gun-Sik Park ◽  
...  

<div> <p>As natural aqueous solutions are far from being pure water, being rich in ions, the properties of solvated ions are of relevance for a wide range of systems, including biological and geochemical environments. We conducted ab initio and classical MD simulations of the alkaline earth metal ions Mg<sup>2+</sup> and Ca<sup>2+</sup> and of the alkali metal ions Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and Cs<sup>+</sup> in pure water and electrolyte solutions containing the counterions Cl<sup>–</sup> and SO<sub>4</sub><sup>2–</sup>. Through a detailed analysis of these simulations, this study reports on the effect of solution chemistry (composition and concentration of the solution) to the ion–water structural properties and interaction strength, and to the dynamics, hydrogen bond network, and low-frequency dynamics of the ionic solvation shell. Except for the ion–water radial distribution function, which is weakly dependent on the counter-ions and concentrations, we found that all other properties can be significantly influenced by the chemical characteristics of the solution. Calculation of the velocity autocorrelation function of magnesium ions, for example, shows that chlorine ions located in the second coordination shell of Mg<sup>2+</sup> weaken the Mg(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> hydration ‘cage’ of the cation. The result reported in this study suggest that ionic solvation shell can be significantly influenced by the interactions between other ions present in solution ions, especially those of opposite charge. In more general terms, the chemical characteristics of the solution, including the balance between ion-solvent and ion-ion interactions, could result in significant differences in behavior and function of the ionic solvation shell.</p> </div>


2018 ◽  
Vol 69 (8) ◽  
pp. 2278-2282
Author(s):  
Stelian Ioan Morariu ◽  
Letitia Doina Duceac ◽  
Alina Costina Luca ◽  
Florina Popescu ◽  
Liliana Pavel ◽  
...  

Maintaining the soil in optimal parameters is vital for mankind, given its essential role in providing the alimentary base, as well as its extremely slow formation and regeneration (hundreds or thousands of years). The direct and indirect pollution of the soil and especially its chemical pollution represent a corollary of other types of pollution, given that it is produced by solid, liquid and gaseous residues. It may be involved in a wide range of diseases (respiratory, cardiovascular, digestive, renal, haematological, osteoarticular, neurological) of allergic, infectious, degenerative or neoplastic nature, from infancy to the old age. Although there are natural causes of soil pollution (e.g. volcanic eruptions), most pollutants come from human activities, which are the most incriminated in its pollution, degradation and erosion at an accelerated pace. The growing concern of all nations for the adoption of measures to limit the chemical pollution of the soil is partially found so far in viable and effective solutions intended to combat soil contamination and degradation and ensure its restoration. Chemical industrialization leads to technical and scientific progress, but at the same time it can develop related pathologies, which means that the role of the occupational health physician is essential in ensuring prophylaxis and the early detection of occupational diseases. Besides that, the role of the pediatrician is equally precious for the detection of specific diseases caused by chemical pollutants to children, because they will develop into adults with pathological stigma.The chemical pollution of the soil is a major challenge for ecologists, given that it is an important risk factor for many types of afflictions. It requires maximum attention from civil society, health care professionals and government institutions. The specialist in occupational medicine, as well as the pediatrician bear an essential responsibility in both, prevention and treatment.


2020 ◽  
Vol 21 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Ana P. dos Santos ◽  
Tamara G. de Araújo ◽  
Gandhi Rádis-Baptista

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


Author(s):  
_______ Archana ◽  
Charu Datta ◽  
Pratibha Tiwari

Degradation of environment is one of the most serious challenges before the mankind in today’s world. Mankind has been facing a wide range of problem arising out of the degradation of environment. Not only the areas under human inhabitation, but the areas of the planet without human population have also been suffering from these problems. As the population increase day by day, the amenities are not improved simultaneously. With the advancement of science and technologies the needs of human beings has been changing rapidly. As a result different types of environmental problems have been rising. Environmental degradation is a wide- reaching problem and it is likely to influence the health of human population is great. It may be defined the deterioration of the environment through depletion of resources such as air, water, and soil. The destruction of ecosystem and extinction of wildlife. Environmental degradation has occurred due to the recent activities in the field of socio-economic, institute and technology. Poverty still remains a problem as the root of several environmental problems to create awareness among the people about the ill effect of environmental pollution. In the whole research it is clear that all factors of environmental degradation may be reduced through- Framing the new laws on environmental degradation, Environment friend policy, Controlling all the ways and means of noise, air, soil and water pollution, Through growing more and more trees and by adapting the proper sanitation policy.  


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.


Sign in / Sign up

Export Citation Format

Share Document