scholarly journals Taking into account multi-axiality of loads on marine structures in their fatigue strength calculations

Author(s):  
Gennadiy Kryzhevich ◽  
Anatoliy Filatov

This paper studies marine structures made of steels and light alloys and exposed to cyclic operational loads. Stress-strain parameters of their joints were taken from mathematical simulations of loads and strains or from actual strain gauging data. The aim of this study is to develop recommendations on fatigue strength calculations: specifically, how to quite the complex mathematical model of multi-axial loading at critical structural points with fast fatigue wear in favour of a simplified stressstrain state description based on optimal assignment of design parameters (stresses) in fatigue failure criteria. Preferability of this approach depends on case-specific requirements to calculation accuracy and timeframes. Uniaxial description of stressed state instead of the three-axial one enables much faster calculation with acceptable drop in accuracy.

Author(s):  
Alexander Babin ◽  
Alexey Kornaev ◽  
Alexey Rodichev ◽  
Leonid Savin

Research in the field of active fluid-film bearing has been recently getting more and more attention, integration of control systems becoming one of the most promising means of enhancement of rotor-bearing nodes' characteristics. It has been determined that the vast majority of papers published on active fluid-film bearing only consider radial bearings, and very few focus on thrust bearings. This lack of attention along with the obvious necessity to fill the said gap has triggered the present research. In cases of rotor machines that experience extensive axial loading due to various reasons, e.g. various turbine engines (aero and spacecraft) and hydraulic pumps (crude oil extraction facilities), such research could prove the feasibility of application of a control system to significantly increase the performance of the whole machine. Moreover, extensive wear during start up and shut down could be eliminated by means of rotor position control, thus life time of a rotor-bearing system could be significantly increased. The present paper features a complex mathematical model of an active thrust fluid-film bearing with a central feeding orifice, a developed test rig designed to verify the presented mathematical model allowing a series of numerical tests to be carried out. Numerical studies focus on the hypothesis of a possibility to use active control in thrust bearings to decrease power loss due to friction and extensive axial vibrations by means of identification of an energy efficient area of axial gaps based on the lubrication regime and its maintenance by means of application of controlled lubrication principles.


One of the approaches to the development of a complex mathematical model of a production system is considered. Keywords mathematical model; target subsystem; quality criterion; controlling parameter; hierarchical structure


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1358
Author(s):  
Ewa Golisz ◽  
Adam Kupczyk ◽  
Maria Majkowska ◽  
Jędrzej Trajer

The objective of this paper was to create a mathematical model of vacuum drops in a form that enables the testing of the impact of design parameters of a milking cluster on the values of vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis and a simulation of a model with a simplified structure of vacuum drops in the claw were carried out. As a result, the impact of the milking machine’s design parameters on the milking process could be analysed. The results showed that a change in the local loss and linear drag coefficient in the long milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the air/liquid mix, and a higher diameter of the long milk tube are used.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


1970 ◽  
Vol 92 (2) ◽  
pp. 173-181 ◽  
Author(s):  
M. K. Selc¸uk ◽  
G. T. Ward

Mathematical model and computer programs have been developed for the analysis of the economic performance of a terrestrial solar power system using heat engines. Various combinations of cycle, collector, engine, storage system, and sink have been studied and the influence of design parameters on power costs examined for both the steady and unsteady state cases. Typical minimum power costs under central Australian conditions for units of 12 kw capacity at current levels of materials and labor costs range from 7 to 47 U. S. cents per kwh, according to the specific design of installation.


Author(s):  
Bakhtiyar Ismailov ◽  
Zhanat Umarova ◽  
Khairulla Ismailov ◽  
Aibarsha Dosmakanbetova ◽  
Saule Meldebekova

<p>At present, when constructing a mathematical description of the pyrolysis reactor, partial differential equations for the components of the gas phase and the catalyst phase are used. In the well-known works on modeling pyrolysis, the obtained models are applicable only for a narrow range of changes in the process parameters, the geometric dimensions are considered constant. The article poses the task of creating a complex mathematical model with additional terms, taking into account nonlinear effects, where the geometric dimensions of the apparatus and operating characteristics vary over a wide range. An analytical method has been developed for the implementation of a mathematical model of catalytic pyrolysis of methane for the production of nanomaterials in a continuous mode. The differential equation for gaseous components with initial and boundary conditions of the third type is reduced to a dimensionless form with a small value of the peclet criterion with a form factor. It is shown that the laplace transform method is mainly suitable for this case, which is applicable both for differential equations for solid-phase components and calculation in a periodic mode. The adequacy of the model results with the known experimental data is checked.</p>


Author(s):  
Hee-Dong Chae ◽  
Seung-bok Choi ◽  
Jong-Seok Oh

This paper proposes a new bed stage for patients in ambulance vehicle in order to improve ride quality in term of vibration control. The vibration of patient compartment in ambulance can cause a secondary damage to a patient and a difficulty for a doctor to perform emergency care. The bed stage is to solve vertical, rolling, and pitching vibration in patient compartment of ambulance. Four MR (magneto-rheological) dampers are equipped for vibration isolation of the stage. Firstly, a mathematical model of stage is derived followed by the measurement of vibration level of patient compartment of real ambulance vehicle. Then, the design parameters of bed stage is undertaken via computer simulation. Skyhook, PID and LQR controllers are used for vibration control and their control performances are compared.


Sign in / Sign up

Export Citation Format

Share Document