scholarly journals Wake optimization of ducted propeller

2021 ◽  
Vol 1 (395) ◽  
pp. 79-84
Author(s):  
V. Bushkovsky ◽  
◽  
A. Koval ◽  
A. Maslova ◽  
◽  
...  

Object and purpose of research. This paper discusses marine ducted propeller and the ways to ensure its target performance parameters. The purpose of this study was to mitigate unsteady forces on the propeller behind the duct struts. Materials and methods. Analytical estimates of propeller parameters and in-house KSRC methods for numerical simulation of ducted propeller behaviour. Main results. Calculations of effective wake behind duct struts taking into account the flow around hull and its append-ages. Calculations of unsteady forces for a standard propeller operating in this wake. Design of a propeller with increased blade skew. Calculations of unsteady forces for the new propeller in the initial wake. Wake field parameters contributing to mitigation of unsteady forces. Calculations for the new strut shape for wake optimization. Calculations of unsteady force amplitudes for standard propeller in the new wake. Conclusion. Ducted propeller discussed in this study was meant to illustrate how propeller wake properties, like unsteady forces, can be optimized without changing propeller geometry, only by means of curved duct struts.

Author(s):  
Md. Asif Amin ◽  
Bruce Colbourne ◽  
Brian Veitch

The propeller jet from a ship has a significant component directed upwards towards the free surface of the water, which can be used for ice management. This paper describes a comprehensive laboratory experiment where the influences of operational factors affecting a propeller wake velocity field were investigated. The experiment was done on a steady wake field to investigate the characteristics of the axial velocity of the fluid in the wake and the corresponding variability downstream of the propeller. The axial velocities and the variability recorded were time-averaged. Propeller rotational speed was found to be the most significant factor, followed by propeller inclination. The experimental results also provide some idea about the change of the patterns of the mean axial velocity distribution against the factors considered for the test throughout the effective wake field, as well as the relationships to predict the axial velocity for known factors.


2009 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Shu-Hao Chang ◽  
Yi-Hsiang Yu ◽  
Lei He

This paper presents the analysis of the performance for podded and ducted propellers using a hybrid numerical method, which couples a vortex lattice method (MPUF-3A) for the unsteady analysis of propellers and a viscous flow solver (NS-3X or FLUENT) for the prediction of the viscous flow around propulsors and the drag force on the pod and duct surfaces. The time averaged propeller force distributions are considered as source terms (body force) in the momentum equations of NS-3X and FLUENT. The effects of viscosity on the effective wake and on the performance of the propeller blade, as well as on the predicted pod and duct forces, are assessed. The convergence study of circulation distributions with number of lattices is reported in the ducted propeller case. Finally, the prediction of the performance for podded propellers (both single pull-type and twin-type) and ducted propellers from the present method is validated against existing experimental data.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Narmin Baagherzadeh Hushmandi ◽  
Jens E. Fridh ◽  
Torsten H. Fransson

A numerical and experimental study of partial admission in a low reaction two-stage axial air test turbine is performed in this paper. In order to model one part load configuration, corresponding to zero flow in one of the admission arcs, the inlet was blocked at one segmental arc, at the leading edge of the first stage guide vanes. Due to the unsymmetrical geometry, the full annulus of the turbine was modeled numerically. The computational domain contained the shroud and disk cavities. The full admission turbine configuration was also modeled for reference comparisons. Computed unsteady forces of the first stage rotor blades showed cyclic change both in magnitude and direction while moving around the circumference. Unsteady forces of first stage rotor blades were plotted in the frequency domain using Fourier analysis. The largest amplitudes caused by partial admission were at first and second multiples of rotational frequency due to the existence of single blockage and change in the force direction. Unsteady forces of rotating blades in a partial admission turbine could cause unexpected failures in operation; therefore, knowledge about the frequency content of the unsteady force vector and the related amplitudes is vital to the design process of partial admission turbine blades. The pressure plots showed that the nonuniformity in the static pressure field decreases considerably downstream of the second stage’s stator row, while the nonuniformity in the dynamic pressure field is still large. The numerical results between the first stage’s stator and rotor rows showed that the leakage flow leaves the blade path down into the disk cavity in the admitted sector and re-enters downstream of the blocked channel. This process compensates for the sudden pressure drop downstream of the blockage but reduces the momentum of the main flow.


2012 ◽  
Vol 704 ◽  
pp. 173-210 ◽  
Author(s):  
Tadd T. Truscott ◽  
Brenden P. Epps ◽  
Alexandra H. Techet

AbstractWe present a study of the forces during free-surface water entry of spheres of varying masses, diameters, and surface treatments. Previous studies have shown that the formation of a subsurface air cavity by a falling sphere is conditional upon impact speed and surface treatment. This study focuses on the forces experienced by the sphere in both cavity-forming and non-cavity-forming cases. Unsteady force estimates require accurate determination of the deceleration for both high and low mass ratios, especially as inertial and hydrodynamic effects approach equality. Using high-speed imaging, high-speed particle image velocimetry, and numerical simulation, we examine the nature of the forces in each case. The effect of mass ratio is shown, where a lighter sphere undergoes larger decelerations and more dramatic trajectory changes. In the non-cavity-forming cases, the forces are modulated by the growth and shedding of a strong, ring-like vortex structure. In the cavity-forming cases, little vorticity is shed by the sphere, and the forces are modulated by the unsteady pressure required for the opening and closing of the air cavity. A data-driven boundary-element-type method is developed to accurately describe the unsteady forces using cavity shape data from experiments.


Author(s):  
Y. G. Li ◽  
P. Pilidis ◽  
M. A. Newby

Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design point performance adaptation approach has been developed to best estimate the unknown design point component parameters and match the available design point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, by-pass ratio, etc. The engine target (measurable) performance parameters may be thrust and SFC for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select initially the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design point component parameters. The developed adaptation approach has been applied to a design point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design point component parameters of a model engine that matches the actual engine performance very well. Theoretically the developed techniques can be applied to other gas turbine engines.


2019 ◽  
Author(s):  
Dakui Feng ◽  
Hang Zhang ◽  
Yue Sun ◽  
Qing Wang ◽  
Xiaofei Hu

Abstract Ducted propeller designs are becoming more popular because of their high efficiency, resistance to cavitation and low radiated noise. In this paper, unsteady RANS simulations are carried out for the design of rear stators for ducted propeller to improve its hydrodynamic performance. The design of rear stator is carried out based on the wake field behind propellers. The two-dimensional airfoil modified from NACA4603 is studied to obtain the angle of attack that makes thrust on stators maximum. The analyses are performed at different angles of attack, using commercial computational fluid dynamics (CFD) solver STAR-CCM+ to solve URANS equations. URANS equations are discretized by finite volume method and solved by PISO algorithm. Simulations have been made using unstructured grid with mesh moving technique. The simulation results indicate that the total thrust coefficient and efficiency of modified ducted propeller have been improved by 7.32% and 5.72% respectively compared with the parent one. The simulation results show that the design method is reasonable and feasible.


2021 ◽  
pp. 1-14
Author(s):  
Jui-Hsiang Kao ◽  
Shang-Sheng Chin ◽  
Fang-Nan Chang ◽  
Yu-Han Tsai ◽  
Hua-Tung Wu ◽  
...  

The objective of this paper is to predict the noise radiated from submarine propellers with different control surface types (the cross- and X-type). When the propellers are free from cavitation, such as those of submarines at a diving depth, the radiated noise dominate, due to unsteady propeller forces. A well-known submarine model (DARPA SUBOFF) is taken as the computing sample. Simulations for hydrodynamics, including stern wakes and unsteady propeller forces, are carried out by using CFD (Computational Fluid Dynamics) technology, and the results are compared with the experimental data. The accuracy of the predicted noise depends on the CFD results. Comparisons between the CFD results and the experimental data are in good agreement. The CFD results are treated as dipole strengths in the linear wave theory to predict the radiated noise caused by the unsteady forces of the propeller. It is found that, when the control surface is of the X-type, the propeller inflow is more uniform, and the radiated noise can be decreased by about 5 dB compared to the cruciform control surface. Introduction When submarines are at diving depth, the noise generated by unsteady propeller forces (i.e., dipole strengths) will dominate. Because the juncture vortex caused by the sail makes the propeller inflow more nonuniform, the dipole strength will be enhanced and the radiated noise will be more noticeable. The uniformity of the wake field at the stern should be controlled well in order to restrain the radiated noise.


1992 ◽  
Vol 114 (1) ◽  
pp. 123-131 ◽  
Author(s):  
T. Korakianitis

This article investigates the generation of unsteady forces on turbine blades due to potential-flow interaction and viscous-wake interaction from upstream blade rows. A computer program is used to calculate the unsteady forces on the rotor blades. Results for typical stator-to-rotor-pitch ratios and stator outlet-flow angles show that the first spatial harmonic of the unsteady force may decrease for higher stator-to-rotor-pitch ratios, while the higher spatial harmonics increase. This (apparently counterintuitive) trend for the first harmonic, and other blade row interaction issues, are explained by considering the mechanisms by which the viscous wakes and the potential-flow interaction affect the flow field. The interaction mechanism is shown to vary with the stator-to-rotor-pitch ratio and with the outlet flow angle of the stator. It is also shown that varying the axial gap between rotor and stator can minimize the magnitude of the unsteady part of the forces generated by the combined effects of the two interactions.


1968 ◽  
Vol 12 (01) ◽  
pp. 69-80
Author(s):  
G. J. Klose ◽  
A. J. Acosta

An experimental investigation is reported of the unsteady forces due to heaving motion of fully wetted hydrofoils of unity aspect ratio and also in two-dimensional flow. The tests covered a broad range of reduced frequency and determined the effects of variation in submergence depth, angle of attack, oscillation amplitude, and flow velocity. In general, the findings agree well with available theoretical calculations, but some unexpected variations were found for the case of a wedge-shaped foil and for changes in angle of attack.


2015 ◽  
Author(s):  
Y E Shon ◽  
◽  
B J Chang ◽  
J M You ◽  
B W Han ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document