An Adaptation Approach for Gas Turbine Design-Point Performance Simulation

Author(s):  
Y. G. Li ◽  
P. Pilidis ◽  
M. A. Newby

Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design point performance adaptation approach has been developed to best estimate the unknown design point component parameters and match the available design point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, by-pass ratio, etc. The engine target (measurable) performance parameters may be thrust and SFC for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select initially the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design point component parameters. The developed adaptation approach has been applied to a design point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design point component parameters of a model engine that matches the actual engine performance very well. Theoretically the developed techniques can be applied to other gas turbine engines.

2005 ◽  
Vol 128 (4) ◽  
pp. 789-795 ◽  
Author(s):  
Y. G. Li ◽  
P. Pilidis ◽  
M. A. Newby

Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design-point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design-point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design-point performance adaptation approach has been developed to best estimate the unknown design-point component parameters and match the available design-point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, bypass ratio, etc. The engine target (measurable) performance parameters may be thrust and specific fuel consumption for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select, initially, the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design-point component parameters. The developed adaptation approach has been applied to a design-point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design-point component parameters of a model engine that matches the actual engine performance very well. Theoretically, the developed techniques can be applied to other gas turbine engines.


Author(s):  
Y. G. Li

Accurate estimation of performance status of a gas turbine engine at certain ambient and operating condition based on measured gas path parameters is very important for both engine designers and users alike. It could be a very challenging task for engine performance engineers to estimate the value of component design parameters in order to match measured gas path parameters when the number of design point component parameters and the number of measurable performance parameters become large. Such status estimation can be used to distinguish the performance difference among fleet engines and build accurate engine models at an artificial design point for individual engines, which is also crucially important for gas path diagnostic analysis. In this paper, a gas turbine design point performance adaptation approach based on the integration of gas turbine thermodynamic performance modelling and a Genetic Algorithm has been developed in order to estimate the design point component parameters and match the available gas path measurements of real engines. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, by-pass ratio, etc. The engine measurable performance parameters may be thrust and specific fuel consumption for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. The developed adaptation approach has been applied to a design point performance status estimation of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and robust in producing a model engine that matches the actual engine performance with acceptable computation speed. Theoretically the developed techniques can be applied to different gas turbine engines.


Author(s):  
Jude Iyinbor

The optimisation of engine performance by predictive means can help save cost and reduce environmental pollution. This can be achieved by developing a performance model which depicts the operating conditions of a given engine. Such models can also be used for diagnostic and prognostic purposes. Creating such models requires a method that can cope with the lack of component parameters and some important measurement data. This kind of method is said to be adaptive since it predicts unknown component parameters that match available target measurement data. In this paper an industrial aeroderivative gas turbine has been modelled at design and off-design points using an adaptation approach. At design point, a sensitivity analysis has been used to evaluate the relationships between the available target performance parameters and the unknown component parameters. This ensured the proper selection of parameters for the adaptation process which led to a minimisation of the adaptation error and a comprehensive prediction of the unknown component and available target parameters. At off-design point, the adaptation process predicted component map scaling factors necessary to match available off-design point performance data.


2004 ◽  
Vol 128 (3) ◽  
pp. 579-584 ◽  
Author(s):  
Vassilios Pachidis ◽  
Pericles Pilidis ◽  
Fabien Talhouarn ◽  
Anestis Kalfas ◽  
Ioannis Templalexis

Background . This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. Approach. The technique described in this paper utilizes an object-oriented, zero-dimensional (0D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3D) computational fluid dynamics (CFD) component model. The work investigates relative changes in the simulated engine performance after coupling the 3D CFD component to the 0D engine analysis system. For the purposes of this preliminary investigation, the high-fidelity component communicates with the lower fidelity cycle via an iterative, semi-manual process for the determination of the correct operating point. This technique has the potential to become fully automated, can be applied to all engine components, and does not involve the generation of a component characteristic map. Results. This paper demonstrates the potentials of the “fully integrated” approach to component zooming by using a 3D CFD intake model of a high bypass ratio turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The high-fidelity model can fully define the characteristic of the intake at several operating condition and is subsequently used in the 0D cycle analysis to provide a more accurate, physics-based estimate of intake performance (i.e., pressure recovery) and hence, engine performance, replacing the default, empirical values. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the coupled, high-fidelity component is presented in this paper. The analysis carried out by this study demonstrates relative changes in the simulated engine performance larger than 1%. Conclusions. This investigation proves the value of the simulation strategy followed in this paper and completely justifies (i) the extra computational effort required for a more automatic link between the high-fidelity component and the 0D cycle, and (ii) the extra time and effort that is usually required to create and run a 3D CFD engine component, especially in those cases where more accurate, high-fidelity engine performance simulation is required.


Author(s):  
P. Lacitignola ◽  
E. Valentini

This paper presents a review of the engineering testing program related to development of the PGT-25 gas turbine. The experimental methods employed and their capability of providing information for the tuning of the engine and its parts are discussed. Testing has continuously supported turbine design and development; integration of analytical and experimental procedures has proven to be efficient for successful final engine testing. Full load testing, using well developed instrumentation, has made it possible to know actual component behavior and engine performance in steady and transient states, over the entire speed and power range. The reliability of the machine has been assessed through the results of these tests.


Author(s):  
Changduk Kong ◽  
Jayoung Ki ◽  
Myoungcheol Kang

A scaling method for characteristics of gas turbine components using experimental data or partially given data from engine manufacturers was newly proposed. In case of currently used traditional scaling methods, the predicted performance around the on-design point may be well agreed with the real engine performance, but the simulated performance at off-design points far away from the on-design point may not be well agreed with the real engine performance generally. It would be caused that component scaling factors, which were obtained at on-design point, is also used at all other operating points and component maps are derived from different known engine components. Therefore to minimize the analyzed performance error in the this study, firstly component maps are constructed by identifying performances given by engine manufacturers at some operating conditions, then the simulated performance using the identified maps is compared with performances using currently used scaling methods. In comparison, the analyzed performance using the currently used traditional scaling method was well agreed with the real engine performance at the on-design point but had maximum 12% error at off design points within the flight envelope of a calculation example turboprop engine. However the performance result using the newly proposed scaling method had maximum 6% reasonable error even at all flight envelope.


Author(s):  
C. Rodgers

The historical development of the world’s first pure jet propelled aircraft, the Heinkel He 178, and its turbojet the He S3B has been extensively documented, however only limited descriptions of the engine and component aero-thermo-dynamic performances have, as yet, been published in open English literature. The basic He S3B engine flowpath configuration of a radial compressor mounted back-to-back with a radial inflow turbine, intrigued the author as one excellent example of the pre WW11 radial turbomachinery ingenuity and expertise, to the extent that it prompted this diagnosis. Recognizing that some of the historically quoted HeS3B performance data may be dubious, attempts have been made to coalesce data from multiple sources into a more consistent account by conducting a detailed engine performance analysis. HeS3B engine performance characteristics are recreated based upon predicted meanline component maps derived from engine drawings and supporting data recently published by AIAA in his biography “Dr Hans von Ohain — Excellence in Flight”. Predicted engine performance parameters at both a five minute and maximum continuous rating are itemized, together with thrust/rpm/temperature variations at part speed conditions.


Author(s):  
Giovanni Torella

The influence of air system an engine performance and behaviour is considered. A method based on the polytropic efficiency concept has been developed in order to calculate the thermodynamic characteristics of air bleed. This method has been included in the “Design Point” and “Off Design” codes of different configuration engines. The paper shows the wide applications of the programs for several calculations. Moreover the results of the faults of air system are shown by both diagnostic and fault simulation computer programs.


Author(s):  
Selcuk Can Uysal ◽  
James B. Black

Abstract During the operation of an industrial gas turbine, the engine deviates from its new condition performance because of several effects including dirt build-up, compressor fouling, material erosion, oxidation, corrosion, turbine blade burning or warping, thermal barrier coating (TBC) degradation, and turbine blade cooling channel clogging. Once these problems cause a significant impact on engine performance, maintenance actions are taken by the operators to restore the engine to new performance levels. It is important to quantify the impacts of these operational effects on the key engine performance parameters such as power output, heat rate and thermal efficiency for industrial gas turbines during the design phase. This information can be used to determine an engine maintenance schedule, which is directly related to maintenance costs during the anticipated operational time. A cooled gas turbine performance analysis model is used in this study to determine the impacts of the TBC degradation and compressor fouling on the engine performance by using three different H-Class gas turbine scenarios. The analytical tool that is used in this analysis is the Cooled Gas Turbine Model (CGTM) that was previously developed in MATLAB Simulink®. The CGTM evaluates the engine performance using operating conditions, polytropic efficiencies, material properties and cooling system information. To investigate the negative impacts on engine performance due to structural changes in TBC material, compressor fouling, and their combined effect, CGTM is used in this study for three different H-Class engine scenarios that have various compressor pressure ratios, turbine inlet temperatures, and power and thermal efficiency outputs; each determined to represent different classes of recent H-Class gas turbines. Experimental data on the changes in TBC performance are used as an input to the CGTM as a change in the TBC Biot number to observe the impacts on engine performance. The effect of compressor fouling is studied by changing the compressor discharge pressures and polytropic compressor efficiencies within the expected reduction ranges. The individual and combined effects of compressor fouling and TBC degradation are presented for the shaft power output, thermal efficiency and heat rate performance parameters. Possible improvements for the designers to reduce these impacts, and comparison of the reductions in engine performance parameters of the studied H-Class engine scenarios are also provided.


Author(s):  
Wilfried P. J. Visser ◽  
Michael J. Broomhead

NLR’s primary tool for gas turbine engine performance analysis is the ‘Gas turbine Simulation Program’ (GSP), a component based modeling environment. GSP’s flexible object-oriented architecture allows steady-state and transient simulation of any gas turbine configuration using a user-friendly drag&drop interface with on-line help running under Windows95/98/NT. GSP has been used for a variety of applications such as various types of off-design performance analysis, emission calculations, control system design and diagnostics of both aircraft and industrial gas turbines. More advanced applications include analysis of recuperated turboshaft engine performance, lift-fan STOVL propulsion systems, control logic validation and analysis of thermal load calculation for hot section life consumption modeling. In this paper the GSP modeling system and object-oriented architecture are described. Examples of applications for both aircraft and industrial gas turbine performance analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document