Phytochemicals and Antimicrobial Activity of Vitexdoniana (verbenaceae) on Salmonella typhimurium

Author(s):  
Joseph Appah ◽  
S. D. Denwe ◽  
Odiba Igbi Abigail
2018 ◽  
Vol 81 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Tian Ren ◽  
Mingyu Qiao ◽  
Lei Zhang ◽  
Jean Weese ◽  
Tung-Shi Huang ◽  
...  

ABSTRACT The antimicrobial activity of 1-chloro-2,2,5,5-tetramethyl-4-imidazoidinone (MC), a nonbleaching N-halamine compound, was investigated on materials commonly used in broiler production, including stainless steel, galvanized metal, aluminum, plastic, and pressure-treated wood. MC aqueous solutions at 0.02, 0.04, and 0.06% were challenged with Salmonella Typhimurium and Campylobacter jejuni at 6 log CFU/mL, resulting in complete inactivation of both bacteria in 30 min with 0.06% MC. Follow-up experiments were performed using test materials treated with 0.1 and 1% MC and challenged with Salmonella Typhimurium and C. jejuni at 6 log CFU per coupon. Stability of MC on the various surfaces of testing materials was assessed, and the chlorine content of the materials was measured using iodometric thiosulfate titration over a 4-week period. Antimicrobial activities were evaluated by a sandwich test on each sampling day during 4 weeks of storage. On the samples treated with 1% MC, bacteria at 6 log CFU per coupon were completely inactivated within 2 h of contact time. The antimicrobial activity extended to 4 weeks, and the active chlorine atoms in the treated materials decreased from the initial 1016 to 1015 atoms per cm2. Overall, MC had high stability and long-lasting antimicrobial activity, which suggests that MC has high potential for use as a novel antimicrobial agent to lower the microbial load on broiler house materials.


1983 ◽  
Vol 29 (10) ◽  
pp. 1339-1343 ◽  
Author(s):  
M. C. Modrzakowski ◽  
D. Dosch-Meier ◽  
R. L. Hodinka

Granule contents from rat polymorphonuclear neutrophils were prepared by extraction with 0.2 M acetate buffer (pH 4.0), dialyzed against phosphate-buffered saline (pH 7.0), and tested for bactericidal activity against selected target bacteria. Salmonella typhimurium LT-2 and a series of progressively rough lipopolysaccharide outer membrane mutants derived from it were used to monitor antimicrobial activity. Although an antimicrobial potential was present in rat granule contents for S. typhimurium, the growth of Pseudomonas aeruginosa PAO-1 in antimicrobial assay mixtures containing rat granule contents was substantially enhanced over control values. The growth enhancement property of the granule protein was heat resistant and promoted increased oxygen consumption by whole cells.


2005 ◽  
Vol 68 (10) ◽  
pp. 2054-2058 ◽  
Author(s):  
CHITSIRI THONGSON ◽  
P. MICHAEL DAVIDSON ◽  
WARAPA MAHAKARNCHANAKUL ◽  
PREEYA VIBULSRESTH

The objective of this study was to determine the potential antimicrobial activity of extracts and essential oils of spices from Thailand against foodborne pathogenic bacteria. The antimicrobial efficacy of ginger (Zingiber officinale), fingerroot (Boesenbergia pandurata), and turmeric (Curcuma longa) was evaluated against five strains of Listeria monocytogenes and four strains of Salmonella enterica ssp. enterica serovar Typhimurium DT104. Antimicrobial activity was investigated in microbiological media by using an agar dilution assay and enumeration over time and a model food system, apple juice, by monitoring growth over time. In the agar dilution assay, water extracts of the three spices had no effect on L. monocytogenes. Similarly, 50% ethanol extracts of ginger or turmeric had no effect. In contrast, ethanolic fingerroot extracts at 5 to 10% (vol/vol) inhibited most L. monocytogenes strains for 24 h in the agar dilution assay. Commercial essential oils (EO) of ginger or turmeric inhibited all L. monocytogenes at ≤0.6 or ≤10%, respectively. Fingerroot EO inhibited all strains at ≤0.4%. In the enumeration-over-time assay, a 5% fingerroot ethanol extract reduced ca. 4 log CFU/ml Listeria by around 2 log in 24 h while 10% inactivated the microorganism in 9 h. Fingerroot EO at 0.2% inactivated 4 log CFU/ml L. monocytogenes in 6 to 9 h. Neither extracts nor commercial EO had any effect on Salmonella Typhimurium DT 104 with the exception of fingerroot EO, which inhibited all strains at ≤0.7%. Addition of 0.2% fingerroot EO to apple juice reduced 4 log of L. monocytogenes Scott A and both strains of Salmonella Typhimurium to an undetectable level within 1 to 2 days. It was concluded that fingerroot EO and extract have potential for inhibiting pathogens in food systems.


Medicines ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 53 ◽  
Author(s):  
Saleh Abu-Lafi ◽  
Mahmoud Rayan ◽  
Mahmud Masalha ◽  
Basheer Abu-Farich ◽  
Hashem Al-Jaas ◽  
...  

Background: The wild population of spotted golden thistle, Scolymus maculatus, which belongs to the Compositae family, is believed to be one of the multi-curative wild plants mentioned in Flora Palaestina. This study aims to disclose the phytochemical composition, antioxidant potential, and antimicrobial activity of wild S. maculatus collected from the farms of Kabul, a village in northwest Galilee, for the first time. Methods: The phytochemical components of crude S. maculatus extracts from methanol, ethyl acetate, and n-hexane solvents were separated and identified using gas chromatography-mass spectrometry (GC-MS) in the electron impact (EI) mode. The free radical scavenging of the plant extracts was measured by DPPH assay. The microdilution test was used to determine the minimum inhibitory concentrations (MICs) of different S. maculatus extracts and to evaluate their antimicrobial activities. Results: Thirty-two phytochemicals were found in S. maculatus extracts including stigmasterol, γ-sitosterol, lupeol, lupeol acetate, and β-amyrin. Phytochemicals, such as 2-linoleoylglycerol, γ-sitosterol, β-amyrin, lupeol, (3α)-12-oleanen-3-yl acetate, and lupenyl acetate, were found to dominate the methanol extract. Most of these compounds were also observed in ethyl acetate and n-hexane extracts, but at different levels, in addition to some other minor compounds. The various extracts were investigated for their antioxidant and antimicrobial activity. The ethanolic and the methanolic extracts were shown to exhibit the highest free radical scavenging by DPPH assay with a half-maximally effective concentration (EC50) of 0.37 and 0.65 mg/mL respectively, while the other three extracts (aqueous, ethyl acetate and n-hexane) were less active and their EC50 (effective concentration at which DPPH radical was scavenged by 50%) were above 1.0 mg/mL. Moreover, MICs were determined to be effective against Staphylococcus aureus, Salmonella typhimurium, and Candida albicans microorganisms. Ethyl acetate and the ethanolic extracts are active against the three types of microorganisms at a minimum inhibitory concentration (MIC) of 0.5 mg/mL, while aqueous and the n-hexane extracts are inactive against Salmonella typhimurium. Conclusions: The results show that S. maculatus extracts are a rich source of compounds that can play an important role in human health, and in a broader context, in the treatment of various diseases, such antimicrobial and antioxidant-related ailments.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Angel Konakchiev ◽  
Milka Todorova ◽  
Bozhanka Mikhova ◽  
Antonina Vitkova ◽  
Hristo Najdenski

The essential oil of Achillea distans W. et K. flower heads was analyzed by GC and GC-MS. Altogether 43 components in concentrations more than 0.1% were identified representing 93.5% of the oil composition. The main constituents were 1,8-cineole (16.8%), trans-thujone (9.8%), sabinene (8.2%), borneol (7.5%), β-pinene (6.5%), and camphor (5.8%). The oil showed moderate activity against Staphylococcus aureus and Candida albicans, and weak activity against Salmonella typhimurium, Proteus vulgaris, and Escherichia coli.


2013 ◽  
Vol 5 ◽  
pp. 61-70 ◽  
Author(s):  
A. Ravaei ◽  
Z. Heshmati poor ◽  
T. Z. Salehi ◽  
I. A. Tamai ◽  
M. Ghane ◽  
...  

1999 ◽  
Vol 62 (5) ◽  
pp. 474-479 ◽  
Author(s):  
CATHERINE N. CUTTER

Triclosan is a nonionic, broad-spectrum, antimicrobial agent that has been incorporated into a variety of personal hygiene products, including hand soaps, deodorants, shower gels, mouthwashes, and toothpastes. In this study, plastic containing 1,500 ppm of triclosan was evaluated in plate overlay assays and meat experiments as a means of reducing populations of bacteria. Plate overlay assays indicated that the triclosan-incorporated plastic (TIP) inhibited the following organisms: Brochothrix thermosphacta ATCC 11509, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 12598, Bacillus subtilis ATCC 6051, Shigella flexneri ATCC 12022, Escherichia coli ATCC 25922, and several strains of E. coli O157:H7. In meat experiment 1, irradiated, lean beef surfaces inoculated with B. thermosphacta, Salmonella Typhimurium, E. coli O157:H7, or B. subtilis were covered with TIP, vacuum packaged, and stored for 24 h at 4°C. Of the organisms tested, only populations of B. thermosphacta were slightly reduced. In meat experiment 2, prerigor beef surfaces were inoculated with E. coli O157: H7, Salmonella Typhimurium, or B. thermosphacta incubated at 4°C for 24 h, wrapped in TIP or control plastic, vacuum packaged, and stored at 4°C for up to 14 days. There was a slight reduction in the population of the organisms after initial application with TIP. However, bacterial populations following long-term, refrigerated (4°C), vacuum-packaged storage up to 14 days were not statistically (P≤ 0.05) or numerically different than controls. In meat experiment 3, even TIP-wrapped, vacuum-packaged beef samples that were temperature abused at 12°C did not exhibit significant (P ≤ 0.05) or sustainable reductions after 14 days of 4°C storage. Another study indicated that populations of E. coli O157:H7 or B. thermosphacta added directly to TIP were not affected after 2 h of refrigerated storage or that the antimicrobial activity could be extracted from the plastic. Additional experiments suggest that presence of fatty acids or adipose may diminish the antimicrobial activity of TIP on meat surfaces. This study demonstrates that while antimicrobial activity is detected against bacterial cultures in antimicrobial plate assays, plastic containing 1,500 ppm of triclosan does not effectively reduce bacterial populations on refrigerated, vacuum-packaged meat surfaces.


2012 ◽  
Vol 68 (1) ◽  
pp. 139-152 ◽  
Author(s):  
S. A. Marathe ◽  
R. Kumar ◽  
P. Ajitkumar ◽  
V. Nagaraja ◽  
D. Chakravortty

Sign in / Sign up

Export Citation Format

Share Document