scholarly journals Shoaling of long water waves by its interaction with a submerged breakwater of wavy surfaces

Author(s):  
E. Bautista ◽  
A. Medina-Rodríguez
Author(s):  
Y Liu ◽  
H Liu ◽  
H Zhang ◽  
G Miao

Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called σ transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.


2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


2017 ◽  
Vol 1 (2) ◽  
pp. 34
Author(s):  
Zulkarnain Zulkarnain ◽  
Nadjadji Anwar

The Research Center and Development of Water (Puslitbang) is currently developing the Submerged Breakwater in shallow sea area (PEGAR). The author is interested to examine the material that easily obtained in the field of RCP concrete cylinder. The observation is how it to be ability in function as submerged breakwater an go green and low cost. The physical model of wave transmission test is how the response to the structure in ability to damping of wave as the breakwater function. In this research breakwater used is submerged breakwater type by using concrete cylinder (buis beton). The purpose from this research is to know how the response of breakwater structure to the waves through it, with some variation of the structure by creating a structure with three variations of the arrangement and freeboard that is the relative depth with the crest width is constant. The wave generated test in this study is using regular waves in wave flume at FTSP Civil Engineering Department of Institute Technology Ten November. From the analysis of the effect of the installation of submerged breakwater by using concrete cylinder to the wave damping value, it can be concluded that the factors that are very influential is the freeboard and the composition of concrete cylinder. Scenario A (rigid vertical massive) is capable of producing the smallest value of kt is 0.33. As for scenario B (rigid horyzontal massive) with a damping value of 0.5, while the scenario C (rigid permeable) is only able to produce kt value of 0.71. Scenario A is better than scenario B and C Because the position of arrangement of A is very good used to damp wave in small or big freeboard conditions.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

Author(s):  
S. G. Rajeev

Some exceptional situations in fluid mechanics can be modeled by equations that are analytically solvable. The most famous example is the Korteweg–de Vries (KdV) equation for shallow water waves in a channel. The exact soliton solution of this equation is derived. The Lax pair formalism for solving the general initial value problem is outlined. Two hamiltonian formalisms for the KdV equation (Fadeev–Zakharov and Magri) are explained. Then a short review of the geometry of curves (Frenet–Serret equations) is given. They are used to derive a remarkably simple equation for the propagation of a kink along a vortex filament. This equation of Hasimoto has surprising connections to the nonlinear Schrödinger equation and to the Heisenberg model of ferromagnetism. An exact soliton solution is found.


Sign in / Sign up

Export Citation Format

Share Document