scholarly journals The technique of X-ray diffraction for stresses quantification in metallic elements

Author(s):  
S. Sánchez-Beitia ◽  
J. Barrallo
2011 ◽  
Vol 80-81 ◽  
pp. 60-63
Author(s):  
Xue Qing Yue ◽  
Hua Wang ◽  
Shu Ying Wang

Incorporation of metallic elements, titanium and copper, into carbonaceous mesophase (CM) was performed through mechanical alloying in a ball mill apparatus. The structures of the raw CM as well as the Ti/Cu-added CM were characterized by X-ray diffraction. The tribological behavior of the Ti/Cu-added CM used as lubricating additives was investigated by using a high temperature friction and wear tester. The results show that, compared with the raw CM, the Ti/Cu-added CM exhibits a drop in the crystallinity and a transition to the amorphous. The Ti/Cu-added CM used as lubricating additive displays an obvious high temperature anti-friction and wear resistance effect, and the lager the applied load, the lower the friction coefficient and the wear severity.


2013 ◽  
Vol 77 (3) ◽  
pp. 269-274 ◽  
Author(s):  
L. Bindi ◽  
F. Zaccarini ◽  
G. Garuti ◽  
N. Angeli

AbstractChemical and structural data are reported for platinum–palladium intermediates from two nuggets found at Córrego Bom Sucesso, Minas Gerais, Brazil. Three grains with simple stoichiometries (i.e. PtxPd1−x with x ∼0.67, ∼0.5 and ∼0.33, which correspond to Pt2Pd, PtPd and PtPd2, respectively) were characterized by single-crystal X-ray diffraction and electron-probe microanalysis. In the absence of single-crystal data it might be tempting to hypothesize that such simple stoichiometries represent distinct mineral species, however structural analyses show that all of the phases are cubic and crystallize in space group Fmm. They are, therefore, natural intermediates in the palladium–platinum solid solution. Reflectance and micro-hardness values are reported for the samples and a comparison with the pure metallic elements made. On the basis of information gained from the chemical and structural characterization it can be concluded that there is a complete solid solution between Pt and Pd in nature. These findings corroborate results from experiments on synthetic compounds.


2013 ◽  
Vol 798-799 ◽  
pp. 25-29
Author(s):  
Su Huang ◽  
Li Zhen Yang ◽  
Fu Yun Li

Hydro-thermal method was applied to synthesize nanoTiO2particles doped with metal and non-metallic elements. nanoTiO2particles were doped at different calcinations temperatures with S and Fe, Ce and La, respectively. X-ray diffraction results indicated that the minimum diameter of nanoTiO2doped with Ce and S was about 7.2nm, which is smaller than other type of double-element doped nanoTiO2. In addition, with the increase of calcinations temperature, the size of nanoTiO2particle increased and the diameter of nanoTiO2doped with Fe and S was the most obvious one. Rhodamine B was used to simulate the pollutant to analyze the photocatalytic property of doped nanoTiO2. The results indicated that the degradation rate of rhodamine B by nanoTiO2doped with La and S under the calcinations temperature of 450 °C reached66.22%.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Abdelaiz Dra ◽  
Abdelali El Gaidoumi ◽  
Karim Tanji ◽  
Aziz Chaouni Benabdallah ◽  
Abdeslem Taleb ◽  
...  

The discharge of large quantities of industrial and domestic effluents into the estuaries, with or without treatment, has led to an increase in the amount of micropollutants present in the sediments. In this study, we have assessed the quality of sediments of Sebou river studying the physicochemical parameters, percentage of organic matter, mineralogy, and trace levels of metal elements trapped in the sample sediments of Sebou river. The sediments samples were collected from the upstream of Fez river, confluence between the Fez river and the Sebou river, Ain Nokbi river, and edge of Sebou river, where wastewaters from the city of Fez are discharged. The sediments samples were characterized by scanning electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy, while trace levels of metallic elements, Calcium, Zinc, Copper, Cadmium, Iron, and Nickel, were determined by the ICP-AES analysis. The obtained results show that there is a significant change in the values of the studied metals which is probably due to industrial effluents. Indeed, the metal content in the sediments reaches particularly high values exceeding the limit recommended by WHO. These results suggested that the pollution by metallic industrial effluents discharged without treatments poses potential threat to the receiving rivers and may represent a danger for humans which are exposed to pollutants due to the numerous uses of such river waters.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document