scholarly journals Impact analysis of laminated and sandwich composites using a plate finite element with strain energy updating

Author(s):  
U. Icardi ◽  
L. Ferrero
1977 ◽  
Vol 5 (2) ◽  
pp. 102-118 ◽  
Author(s):  
H. Kaga ◽  
K. Okamoto ◽  
Y. Tozawa

Abstract An analysis by the finite element method and a related computer program is presented for an axisymmetric solid under asymmetric loads. Calculations are carried out on displacements and internal stresses and strains of a radial tire loaded on a road wheel of 600-mm diameter, a road wheel of 1707-mm diameter, and a flat plate. Agreement between calculated and experimental displacements and cord forces is quite satisfactory. The principal shear strain concentrates at the belt edge, and the strain energy increases with decreasing drum diameter. Tire temperature measurements show that the strain energy in the tire is closely related to the internal temperature rise.


2019 ◽  
Vol 35 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Andomar B. F. Vilela ◽  
Priscilla B. F. Soares ◽  
Fabiana S. de Oliveira ◽  
Tales C. Garcia-Silva ◽  
Carlos Estrela ◽  
...  

2014 ◽  
Vol 611-612 ◽  
pp. 292-299 ◽  
Author(s):  
Sylvain Mathieu ◽  
Philippe Boisse ◽  
Nahiene Hamila ◽  
Florent Bouillon

3D woven composite reinforcements preforming simulations are an unavoidable step of composite part processing. The present paper deals with thick composite fabric behavior modelling and issues arising during the numerical simulation of preforming. After the description of the independent deformation modes of initially orthotropic reinforcements, a physically motivated and invariant based hyperelastic strain energy density is introduced. This constitutive law is used to show the limitations of a classical finite element formulation in 3D fabric simulations. Tension locking is highlighted in bias extension tests and a reduced integration hexahedral finite element with specific physical hourglass stabilization is proposed. Instabilities due to the highly anisotropic behavior law, witnessed in bending dominated situations, are exposed and a stabilization procedure is initiated.


Author(s):  
Luis Santos-Correa ◽  
Diego Pineda-Maigua ◽  
Fernando Ortega-Loza ◽  
Jhonatan Meza-Cartagena ◽  
Ignacio Abril-Naranjo ◽  
...  

Mechanika ◽  
2020 ◽  
Vol 26 (5) ◽  
Author(s):  
Kai QIN ◽  
Jingyuan LI ◽  
Mengsha LIU ◽  
Jinsan JU

The dynamic in-plane instability process of extreme point type for pin-ended arches when a central radial load applied suddenly with infinite duration is analyzed with finite element method in this study. The state of arch can be determined by the crown’s vertical displacement varied with time and the critical load can be obtained by repeating trial-calculation. When the arch structure reaches the dynamically stable critical state, the kinetic energy of the structure is very small or even zero. The dynamic critical load of elastic arch calculated with the theoretical analysis method which is based on energy principle is proved accuracy enough by comparing with the finite element calculation results and the percentage of the differences between them are no more than 4.5 %. The maximal elastic strain energy is certain for the elastic-plastic arch in certain geometry under both a sudden load and static load. The maximal elastic strain energy in static calculation can be used in determining the state of the elastic-plastic arch under dynamic sudden loads applied and this method is more accurate which errors won’t exceed 3.5 %. The accuracy of dynamic critical load calculation method for elastic arch is verified by numerical calculation in this study, and based on the characteristic of elastic strain energy in critical state, a method for determining the stability of elastic-plastic arch is presented.


2014 ◽  
Vol 657 ◽  
pp. 735-739 ◽  
Author(s):  
Emilian Ionut Croitoru ◽  
Gheorghe Oancea

This paper presents a method of finite element modelling used for the impact analysis of a composite panel. In this research, the composite panel consists of an oxygen mask locking panel of an aircraft. This panel is loaded with one concentrated abuse loading and three uniform distributed abuse loading cases and the stress variation within the composite panel for each load case is determined. In order to assess the impact analysis on the oxygen mask panel of the aircraft, a finite element model is created using Patran as the main application for pre/post-processing and Nastran as the main processor. The paper also presents a comparison between results obtained using the same finite element modelling of the composite panel CAD model of the panel with four load cases with different material types. The results are used to determine the most capable material stresswise.


Sign in / Sign up

Export Citation Format

Share Document