scholarly journals Experimental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads

Author(s):  
H. M. Kang ◽  
M. S. Kang ◽  
M. S. Kim ◽  
H. K. Kwak ◽  
L. J. Park ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Qixiang Yan ◽  
Zhixin Deng ◽  
Yanyang Zhang ◽  
Wenbo Yang

Impact loads generated by derailed trains can be extremely high, especially in the case of heavy trains running at high speeds, which usually cause significant safety issues to the rail infrastructures. In shield tunnels, such impact loads may not only cause the damage and deformation of concrete segments, but also lead to the failure of segmental joint bolts. This paper presents a numerical study on the failure behavior of segmental joint bolts in the shield tunnel under impact loading resulting from train derailments. A three-dimensional (3D) numerical model of a shield tunnel based on the finite element (FE) modelling strategy was established, in which the structural behavior of the segmental joint surfaces and the mechanical behavior of the segmental joint bolts were determined. The numerical results show that the occurrence of bolt failure starts at the joints near the impacted segment and develops along the travel direction of train. An extensive parametric study was subsequently performed and the influences of the bolt failure on the dynamic response of the segment were investigated. In particular, the proposed FE model and the analytical results will be used for optimizing the design method of the shield tunnel in preventing the failure of the joint bolts due to the impact load from a derailed HST.


2018 ◽  
Vol 33 (6) ◽  
pp. 727-753
Author(s):  
Wei Chen ◽  
Haichao Xiong ◽  
Yong Bai

The mechanical behaviors of steel strip–reinforced flexible pipe (steel strip PSP) under combined axial extension → internal pressure ( T→ P) load path were investigated. Typical failure characteristics of pipe samples under pure internal pressure and T→ P load path were identified in the full-scale experiments. A theoretical model for pipe under tension load was proposed to capture the relationship between axial extension of the pipe body and stress state of the steel strip. Numerical study based on finite element (FE) method was conducted to simulate the experiment process, and good agreement between FE data and experiment results were observed. Sensitivity study was conducted to study the effect of some key parameters on the pipe antiburst capacities in T→P load path; the effect of preloaded internal pressure on the pipe tensile capacity in P→T load path was also studied. Useful conclusions were drawn for the design and application of the steel strip PSP.


Author(s):  
Mehdi Elhimer ◽  
Aboulghit El Malki Alaoui ◽  
Kilian Croci ◽  
Céline Gabillet ◽  
Nicolas Jacques

The phenomenon of slamming on a bubbly liquid has many occurrences in marine and costal engineering. However, experimental or numerical data on the effect of the presence of gas bubbles within the liquid on the impact loads are scarce and the related physical mechanisms are poorly understood. The aim of the present paper is to study numerically the relationship between the void volume fraction and the impact loads. For that purpose, numerical simulations of the impact of a cone on bubbly water have been performed using the finite element code ABAQUS/Explicit. The present results show the diminution of the impact loads with the increase of the void fraction. This effect appears to be related to the high compressibility of the liquid-gas mixture.


Sign in / Sign up

Export Citation Format

Share Document