scholarly journals A Framework for Long-Term Learning Systems

Author(s):  
Diana Benavides-Prado

Increasing amounts of data have made the use of machine learning techniques much more widespread. A lot of research in machine learning has been dedicated to the design and application of effective and efficient algorithms to explain or predict facts. The development of intelligent machines that can learn over extended periods of time, and that improve their abilities as they execute more tasks, is still a pending contribution from computer science to the world. This weakness has been recognised for some decades, and an interest to solve it seems to be increasing, as demonstrated by recent leading work and broader discussions at main events in the field [Chen and Liu, 2015; Chen et al., 2016]. Our research is intended to help fill that gap.

2021 ◽  
Author(s):  
Nikos Fazakis ◽  
Elias Dritsas ◽  
Otilia Kocsis ◽  
Nikos Fakotakis ◽  
Konstantinos Moustakas

2018 ◽  
Vol 27 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Athanasios Tagaris ◽  
Dimitrios Kollias ◽  
Andreas Stafylopatis ◽  
Georgios Tagaris ◽  
Stefanos Kollias

Neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, constitute a major factor in long-term disability and are becoming more and more a serious concern in developed countries. As there are, at present, no effective therapies, early diagnosis along with avoidance of misdiagnosis seem to be critical in ensuring a good quality of life for patients. In this sense, the adoption of computer-aided-diagnosis tools can offer significant assistance to clinicians. In the present paper, we provide in the first place a comprehensive recording of medical examinations relevant to those disorders. Then, a review is conducted concerning the use of Machine Learning techniques in supporting diagnosis of neurodegenerative diseases, with reference to at times used medical datasets. Special attention has been given to the field of Deep Learning. In addition to that, we communicate the launch of a newly created dataset for Parkinson’s disease, containing epidemiological, clinical and imaging data, which will be publicly available to researchers for benchmarking purposes. To assess the potential of the new dataset, an experimental study in Parkinson’s diagnosis is carried out, based on state-of-the-art Deep Neural Network architectures and yielding very promising accuracy results.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2020 ◽  
pp. 193-201 ◽  
Author(s):  
Hayder A. Alatabi ◽  
Ayad R. Abbas

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.


Author(s):  
Christos Floros ◽  
Panagiotis Ballas

Crises around the world reveal a generally unstable environment in the last decades within which banks and financial institutions operate. Risk is an inherent characteristic of financial institutions and is a multifaceted phenomenon. Everyday business practice involves decisions, which requires the use of information regarding various types of threats involved together with an evaluation of their impact on future performance, concluding to combinations of types of risks and projected returns for decision makers to choose from. Moreover, financial institutions process a massive amount of data, collected either internally or externally, in an effort to continuously analyse trends of the economy they operate in and decode global economic conditions. Even though research has been performed in the field of accounting and finance, the authors explore the application of machine learning techniques to facilitate decision making by top management of contemporary financial institutions improving the quality of their accounting disclosure.


Author(s):  
Pablo Díaz-Moreno ◽  
Juan José Carrasco ◽  
Emilio Soria-Olivas ◽  
José M. Martínez-Martínez ◽  
Pablo Escandell-Montero ◽  
...  

Neural Networks (NN) are one of the most used machine learning techniques in different areas of knowledge. This has led to the emergence of a large number of courses of Neural Networks around the world and in areas where the users of this technique do not have a lot of programming skills. Current software that implements these elements, such as Matlab®, has a number of important limitations in teaching field. In some cases, the implementation of a MLP requires a thorough knowledge of the software and of the instructions that train and validate these systems. In other cases, the architecture of the model is fixed and they do not allow an automatic sweep of the parameters that determine the architecture of the network. This chapter presents a teaching tool for the its use in courses about neural models that solves some of the above-mentioned limitations. This tool is based on Matlab® software.


Author(s):  
Qifang Bi ◽  
Katherine E Goodman ◽  
Joshua Kaminsky ◽  
Justin Lessler

Abstract Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.


2018 ◽  
Author(s):  
Sandip S Panesar ◽  
Rhett N D’Souza ◽  
Fang-Cheng Yeh ◽  
Juan C Fernandez-Miranda

AbstractBackgroundMachine learning (ML) is the application of specialized algorithms to datasets for trend delineation, categorization or prediction. ML techniques have been traditionally applied to large, highly-dimensional databases. Gliomas are a heterogeneous group of primary brain tumors, traditionally graded using histopathological features. Recently the World Health Organization proposed a novel grading system for gliomas incorporating molecular characteristics. We aimed to study whether ML could achieve accurate prognostication of 2-year mortality in a small, highly-dimensional database of glioma patients.MethodsWe applied three machine learning techniques: artificial neural networks (ANN), decision trees (DT), support vector machine (SVM), and classical logistic regression (LR) to a dataset consisting of 76 glioma patients of all grades. We compared the effect of applying the algorithms to the raw database, versus a database where only statistically significant features were included into the algorithmic inputs (feature selection).ResultsRaw input consisted of 21 variables, and achieved performance of (accuracy/AUC): 70.7%/0.70 for ANN, 68%/0.72 for SVM, 66.7%/0.64 for LR and 65%/0.70 for DT. Feature selected input consisted of 14 variables and achieved performance of 73.4%/0.75 for ANN, 73.3%/0.74 for SVM, 69.3%/0.73 for LR and 65.2%/0.63 for DT.ConclusionsWe demonstrate that these techniques can also be applied to small, yet highly-dimensional datasets. Our ML techniques achieved reasonable performance compared to similar studies in the literature. Though local databases may be small versus larger cancer repositories, we demonstrate that ML techniques can still be applied to their analysis, though traditional statistical methods are of similar benefit.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yar Muhammad ◽  
Mohammad Dahman Alshehri ◽  
Wael Mohammed Alenazy ◽  
Truong Vinh Hoang ◽  
Ryan Alturki

Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease.


Sign in / Sign up

Export Citation Format

Share Document