scholarly journals A Quantitative Analysis Platform for PD-L1 Immunohistochemistry based on Point-level Supervision Model

Author(s):  
Haibo Mi ◽  
Kele Xu ◽  
Yang Xiang ◽  
Yulin He ◽  
Dawei Feng ◽  
...  

Recently, deep learning has witnessed dramatic progress in the medical image analysis field. In the precise treatment of cancer immunotherapy, the quantitative analysis of PD-L1 immunohistochemistry is of great importance. It is quite common that pathologists manually quantify the cell nuclei. This process is very time-consuming and error-prone. In this paper, we describe the development of a platform for PD-L1 pathological image quantitative analysis using deep learning approaches. As point-level annotations can provide a rough estimate of the object locations and classifications, this platform adopts a point-level supervision model to classify, localize, and count the PD-L1 cells nuclei. Presently, this platform has achieved an accurate quantitative analysis of PD-L1 for two types of carcinoma, and it is deployed in one of the first-class hospitals in China.

2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


2019 ◽  
Vol 146 (4) ◽  
pp. 2810-2810
Author(s):  
Aiguo Han ◽  
Andrew S. Boehringer ◽  
Vivian Montes ◽  
Michael P. Andre ◽  
John W. Erdman ◽  
...  

2020 ◽  
Vol 6 (11) ◽  
pp. 121
Author(s):  
Taye Girma Debelee ◽  
Samuel Rahimeto Kebede ◽  
Friedhelm Schwenker ◽  
Zemene Matewos Shewarega

Deep learning algorithms have become the first choice as an approach to medical image analysis, face recognition, and emotion recognition. In this survey, several deep-learning-based approaches applied to breast cancer, cervical cancer, brain tumor, colon and lung cancers are studied and reviewed. Deep learning has been applied in almost all of the imaging modalities used for cervical and breast cancers and MRIs for the brain tumor. The result of the review process indicated that deep learning methods have achieved state-of-the-art in tumor detection, segmentation, feature extraction and classification. As presented in this paper, the deep learning approaches were used in three different modes that include training from scratch, transfer learning through freezing some layers of the deep learning network and modifying the architecture to reduce the number of parameters existing in the network. Moreover, the application of deep learning to imaging devices for the detection of various cancer cases has been studied by researchers affiliated to academic and medical institutes in economically developed countries; while, the study has not had much attention in Africa despite the dramatic soar of cancer risks in the continent.


Author(s):  
V. V. Damiano ◽  
R. P. Daniele ◽  
H. T. Tucker ◽  
J. H. Dauber

An important example of intracellular particles is encountered in silicosis where alveolar macrophages ingest inspired silica particles. The quantitation of the silica uptake by these cells may be a potentially useful method for monitoring silica exposure. Accurate quantitative analysis of ingested silica by phagocytic cells is difficult because the particles are frequently small, irregularly shaped and cannot be visualized within the cells. Semiquantitative methods which make use of particles of known size, shape and composition as calibration standards may be the most direct and simplest approach to undertake. The present paper describes an empirical method in which glass microspheres were used as a model to show how the ratio of the silicon Kα peak X-ray intensity from the microspheres to that of a bulk sample of the same composition correlated to the mass of the microsphere contained within the cell. Irregular shaped silica particles were also analyzed and a calibration curve was generated from these data.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2019 ◽  
Author(s):  
Qian Wu ◽  
Weiling Zhao ◽  
Xiaobo Yang ◽  
Hua Tan ◽  
Lei You ◽  
...  

2020 ◽  
Author(s):  
Priyanka Meel ◽  
Farhin Bano ◽  
Dr. Dinesh K. Vishwakarma

2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


Sign in / Sign up

Export Citation Format

Share Document