scholarly journals Deep Semantic Compliance Advisor for Unstructured Document Compliance Checking

Author(s):  
Honglei Guo ◽  
Bang An ◽  
Zhili Guo ◽  
Zhong Su

Unstructured document compliance checking is always a big challenge for banks since huge amounts of contracts and regulations written in natural language require professionals' interpretation and judgment. Traditional rule-based or keyword-based methods cannot precisely characterize the deep semantic distribution in the unstructured document semantic compliance checking due to the semantic complexity of contracts and regulations. Deep Semantic Compliance Advisor (DSCA) is an unstructured document compliance checking platform which provides multi-level semantic comparison by deep learning algorithms. In the statement-level semantic comparison, a Graph Neural Network (GNN) based syntactic sentence encoder is proposed to capture the complicate syntactic and semantic clues of the statement sentences. This GNN-based encoder outperforms existing syntactic sentence encoders in deep semantic comparison and is more beneficial for long sentences. In the clause-level semantic comparison, an attention-based semantic relatedness detection model is applied to find the most relevant legal clauses. DSCA significantly enhances the productivity of legal professionals in the unstructured document compliance checking for banks.

10.2196/23230 ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. e23230
Author(s):  
Pei-Fu Chen ◽  
Ssu-Ming Wang ◽  
Wei-Chih Liao ◽  
Lu-Cheng Kuo ◽  
Kuan-Chih Chen ◽  
...  

Background The International Classification of Diseases (ICD) code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written material as the basis for coding. Coding is both laborious and time-consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more complicated, and deep learning– and natural language processing–related approaches have been studied to assist disease coders. Objective This paper aims at constructing a deep learning model for ICD-10 coding, where the model is meant to automatically determine the corresponding diagnosis and procedure codes based solely on free-text medical notes to improve accuracy and reduce human effort. Methods We used diagnosis records of the National Taiwan University Hospital as resources and apply natural language processing techniques, including global vectors, word to vectors, embeddings from language models, bidirectional encoder representations from transformers, and single head attention recurrent neural network, on the deep neural network architecture to implement ICD-10 auto-coding. Besides, we introduced the attention mechanism into the classification model to extract the keywords from diagnoses and visualize the coding reference for training freshmen in ICD-10. Sixty discharge notes were randomly selected to examine the change in the F1-score and the coding time by coders before and after using our model. Results In experiments on the medical data set of National Taiwan University Hospital, our prediction results revealed F1-scores of 0.715 and 0.618 for the ICD-10 Clinical Modification code and Procedure Coding System code, respectively, with a bidirectional encoder representations from transformers embedding approach in the Gated Recurrent Unit classification model. The well-trained models were applied on the ICD-10 web service for coding and training to ICD-10 users. With this service, coders can code with the F1-score significantly increased from a median of 0.832 to 0.922 (P<.05), but not in a reduced interval. Conclusions The proposed model significantly improved the F1-score but did not decrease the time consumed in coding by disease coders.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 494-505
Author(s):  
Radu-Casian Mihailescu ◽  
Georgios Kyriakou ◽  
Angelos Papangelis

In this paper we address the problem of automatic sensor composition for servicing human-interpretable high-level tasks. To this end, we introduce multi-level distributed intelligent virtual sensors (multi-level DIVS) as an overlay framework for a given mesh of physical and/or virtual sensors already deployed in the environment. The goal for multi-level DIVS is two-fold: (i) to provide a convenient way for the user to specify high-level sensing tasks; (ii) to construct the computational graph that provides the correct output given a specific sensing task. For (i) we resort to a conversational user interface, which is an intuitive and user-friendly manner in which the user can express the sensing problem, i.e., natural language queries, while for (ii) we propose a deep learning approach that establishes the correspondence between the natural language queries and their virtual sensor representation. Finally, we evaluate and demonstrate the feasibility of our approach in the context of a smart city setup.


Author(s):  
Dima M. Alalharith ◽  
Hajar M. Alharthi ◽  
Wejdan M. Alghamdi ◽  
Yasmine M. Alsenbel ◽  
Nida Aslam ◽  
...  

Computer-based technologies play a central role in the dentistry field, as they present many methods for diagnosing and detecting various diseases, such as periodontitis. The current study aimed to develop and evaluate the state-of-the-art object detection and recognition techniques and deep learning algorithms for the automatic detection of periodontal disease in orthodontic patients using intraoral images. In this study, a total of 134 intraoral images were divided into a training dataset (n = 107 [80%]) and a test dataset (n = 27 [20%]). Two Faster Region-based Convolutional Neural Network (R-CNN) models using ResNet-50 Convolutional Neural Network (CNN) were developed. The first model detects the teeth to locate the region of interest (ROI), while the second model detects gingival inflammation. The detection accuracy, precision, recall, and mean average precision (mAP) were calculated to verify the significance of the proposed model. The teeth detection model achieved an accuracy, precision, recall, and mAP of 100 %, 100%, 51.85%, and 100%, respectively. The inflammation detection model achieved an accuracy, precision, recall, and mAP of 77.12%, 88.02%, 41.75%, and 68.19%, respectively. This study proved the viability of deep learning models for the detection and diagnosis of gingivitis in intraoral images. Hence, this highlights its potential usability in the field of dentistry and aiding in reducing the severity of periodontal disease globally through preemptive non-invasive diagnosis.


News is a routine in everyone's life. It helps in enhancing the knowledge on what happens around the world. Fake news is a fictional information madeup with the intension to delude and hence the knowledge acquired becomes of no use. As fake news spreads extensively it has a negative impact in the society and so fake news detection has become an emerging research area. The paper deals with a solution to fake news detection using the methods, deep learning and Natural Language Processing. The dataset is trained using deep neural network. The dataset needs to be well formatted before given to the network which is made possible using the technique of Natural Language Processing and thus predicts whether a news is fake or not.


2021 ◽  
Vol 14 (5) ◽  
pp. 813-821
Author(s):  
Arif Usta ◽  
Akifhan Karakayali ◽  
Özgür Ulusoy

Translating Natural Language Queries (NLQs) to Structured Query Language (SQL) in interfaces deployed in relational databases is a challenging task, which has been widely studied in database community recently. Conventional rule based systems utilize series of solutions as a pipeline to deal with each step of this task, namely stop word filtering, tokenization, stemming/lemmatization, parsing, tagging, and translation. Recent works have mostly focused on the translation step overlooking the earlier steps by using adhoc solutions. In the pipeline, one of the most critical and challenging problems is keyword mapping; constructing a mapping between tokens in the query and relational database elements (tables, attributes, values, etc.). We define the keyword mapping problem as a sequence tagging problem, and propose a novel deep learning based supervised approach that utilizes POS tags of NLQs. Our proposed approach, called DBTagger (DataBase Tagger), is an end-to-end and schema independent solution, which makes it practical for various relational databases. We evaluate our approach on eight different datasets, and report new state-of-the-art accuracy results, 92.4% on the average. Our results also indicate that DBTagger is faster than its counterparts up to 10000 times and scalable for bigger databases.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mingyu Gao ◽  
Fei Wang ◽  
Peng Song ◽  
Junyan Liu ◽  
DaWei Qi

Wood defects are quickly identified from an optical image based on deep learning methodology, which effectively improves the wood utilization. The traditional neural network technique is unemployed for the wood defect detection of optical image used, which results from a long training time, low recognition accuracy, and nonautomatic extraction of defect image features. In this paper, a wood knot defect detection model (so-called BLNN) combined deep learning is reported. Two subnetworks composed of convolutional neural networks are trained by Pytorch. By using the feature extraction capabilities of the two subnetworks and combining the bilinear join operation, the fine-grained features of the image are obtained. The experimental results show that the accuracy has reached up 99.20%, and the training time is obviously reduced with the speed of defect detection about 0.0795 s/image. It indicates that BLNN has the ability to improve the accuracy of defect recognition and has a potential application in the detection of wood knot defects.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateswara Rao Kota ◽  
Shyamala Devi Munisamy

PurposeNeural network (NN)-based deep learning (DL) approach is considered for sentiment analysis (SA) by incorporating convolutional neural network (CNN), bi-directional long short-term memory (Bi-LSTM) and attention methods. Unlike the conventional supervised machine learning natural language processing algorithms, the authors have used unsupervised deep learning algorithms.Design/methodology/approachThe method presented for sentiment analysis is designed using CNN, Bi-LSTM and the attention mechanism. Word2vec word embedding is used for natural language processing (NLP). The discussed approach is designed for sentence-level SA which consists of one embedding layer, two convolutional layers with max-pooling, one LSTM layer and two fully connected (FC) layers. Overall the system training time is 30 min.FindingsThe method performance is analyzed using metrics like precision, recall, F1 score, and accuracy. CNN is helped to reduce the complexity and Bi-LSTM is helped to process the long sequence input text.Originality/valueThe attention mechanism is adopted to decide the significance of every hidden state and give a weighted sum of all the features fed as input.


2019 ◽  
Vol 277 ◽  
pp. 02004
Author(s):  
Middi Venkata Sai Rishita ◽  
Middi Appala Raju ◽  
Tanvir Ahmed Harris

Machine Translation is the translation of text or speech by a computer with no human involvement. It is a popular topic in research with different methods being created, like rule-based, statistical and examplebased machine translation. Neural networks have made a leap forward to machine translation. This paper discusses the building of a deep neural network that functions as a part of end-to-end translation pipeline. The completed pipeline would accept English text as input and return the French Translation. The project has three main parts which are preprocessing, creation of models and Running the model on English Text.


2020 ◽  
pp. 1-12
Author(s):  
Lijing Diao ◽  
Ping Hu

On the basis of convolution neural network, deep learning algorithm can make the convolution layer convolute the input image to complete the hierarchical expression of feature information, which makes pattern recognition more simple and accurate. Now, in the theory of multimodal discourse analysis, the nonverbal features in communication are studied as a symbol system similar to language. In this paper, the author analyzes the deep learning complexity and multimodal target recognition application in English education system. Multimodal teaching gradually has its practical significance in the process of rich teaching resources. The large-scale application of multimedia technology in college English classroom is conducive to the construction of a real language environment. The simulation results show that the multi-layer and one-dimensional convolution structure of the product neural network can effectively complete many natural language problems, including the tagging of lexical and semantic roles, and thus effectively improve the accuracy of natural language processing. Multimodal teaching mode helps to memorize vocabulary images more deeply. 84% of students think that multi-modal teaching mode is closer to life. Meanwhile, multimedia teaching display is more acceptable. College English teachers should renew their teaching concepts and adapt themselves to the new teaching mode.


Sign in / Sign up

Export Citation Format

Share Document