scholarly journals Perception of Deep Band Modulated Speech in the Presence of Noise by Elderly Individuals with Hearing Impairment

2021 ◽  
Vol 7 (2) ◽  

Background: Deep band modulation (DBM) is an envelope enhancement strategy that enhances temporal modulation and may provide a cue for speech understanding among individuals who suffer from temporal processing deficits. Objective: To investigate the effect of deep band modulation on phrase recognition scores at different signal-to-noise ratios (SNRs) among older adults having hearing loss classified as good and poor performers based on temporal resolution ability. Method: Phrase recognition score was obtained for unprocessed and DBM phrases at three SNRs (4, 5, and - 4 dB signal to noise ratio) in 25 (age range 60 to 82 years, mean age 71.48 years) older adults having bilateral mild to moderately severe sloping sensorineural hearing loss. In addition, the gap detection test was also administered to the study participants. Results: A significant better recognition score was obtained in DBM than the unprocessed phrase. The magnitude of improvement from DBM was not the same in all the participants. Thus, the participants were classified into good and poor performers based on their temporal processing ability. The mean unprocessed and DBM phrase recognition scores in each SNR were higher for good performers than the poor performers. The benefit of deep band modulation was evident for the good performers, especially at high SNR, which was moderately correlated with age and temporal processing ability. Conclusion: The benefit from DBM on recognition score for the good performers is predicted from the temporal resolution abilities and age. However, the benefit is minuscule for the poor performers in noise.

2001 ◽  
Vol 86 (2) ◽  
pp. 950-960 ◽  
Author(s):  
Brian G. Burton ◽  
Ben W. Tatler ◽  
Simon B. Laughlin

Gradients in the spatial properties of retinal cells and their relation to image statistics are well documented. However, less is known of gradients in temporal properties, especially at the level of the photoreceptor for which no account exists. Using light flashes and white-noise-modulated light and current stimuli, we examined the spatial and temporal properties of a single class of photoreceptor (R1–6) within the compound eyes of male blowfly, Calliphora vicina. We find that there is a trend toward higher performance at the front of the eye, both in terms of spatiotemporal resolution and signal-to-noise ratio. The receptive fields of frontal photoreceptors are narrower than those of photoreceptors at the side and back of the eye and response speeds are 20% faster. The signal-to-noise ratio at high frequencies is also greatest at the front of the eye, allowing a 30–40% higher information rate. The power spectra of signals and noise indicate that this elevation of performance results both from shorter responses to individual photons and from a more reliable registration of photon arrival times. These distinctions are characteristic of adaptational changes that normally occur on increasing illumination. However, all photoreceptors were absorbing light at approximately the same mean photon rate during our recordings. We therefore suggest that frontal photoreceptors attain a higher state of light adaptation for a given photon rate. This difference may be achieved by a higher density of (Ca2+ permeable) light-gated channels. Consistent with this hypothesis, membrane-impedance measurements show that frontal photoreceptors have a higher specific conductance than other photoreceptors. This higher conductance provides a better temporal performance but is metabolically expensive. Across the eye, temporal resolution is not proportional to spatial (optical) resolution. Neither is it matched obviously to optic flow. Instead we examine the consequences of an improved temporal resolution in the frontal region for the tracking of small moving targets, a behavior exhibited by male flies. We conclude that the temporal properties of a given class of retinal neuron can vary within a single retina and that this variation may be functionally related to the behavioral requirements of the animal.


2014 ◽  
Vol 25 (06) ◽  
pp. 549-561 ◽  
Author(s):  
Helen Glyde ◽  
Sharon Cameron ◽  
Harvey Dillon ◽  
Louise Hickson

Background: The ability to use interaural cues to segregate target speech from competing signals allows people with normal hearing to understand speech at significantly poorer signal-to-noise ratios. This ability, referred to as spatial processing ability or spatial release from masking, has been shown to be deficient in people with a sensorineural hearing loss even after amplification is applied. Spatial processing deficits in a population of children with auditory processing deficits have been found to be remediable through the use of a deficit-specific auditory training program called the LiSN & Learn. Purpose: The aim of the present study was to determine whether LiSN & Learn auditory training could improve the spatial processing ability of hearing-impaired adults and children. In addition, the research investigated whether the age of the participant would affect the efficacy of the training program. Research Design: In a repeated-measures design, participants’ spatial processing ability was assessed pretraining and posttraining using the Listening in Spatialized Noise-Sentences Test (LiSN-S). Questionnaire responses were also collected from participants pretraining and posttraining to provide a subjective measure of real-life listening difficulty. Between the two assessment periods, participants were asked to train with the LiSN & Learn for 15 min per day, 5 days per week for 60 training sessions. Study Sample: Participants were five children (aged 6–11 yr) and five adults (aged 60–74 yr) with up to a moderate sensorineural hearing loss. Data Collection and Analysis: The LiSN & Learn auditory training software incorporates five computer games in which target sentences, processed with head-related transfer functions, are perceived as coming from 0° azimuth, and simultaneous distracting speech streams are perceived as coming from ±90° azimuth. Participants are tasked with identifying a word from the target sentence and selecting the corresponding picture from a selection of four images displayed on the screen. The signal-to-noise ratio is adapted based on whether the response given is correct or incorrect. Results: Despite an average improvement of 10 dB on the LiSN & Learn training program, no significant improvements were seen posttraining in either of the spatially separated conditions of the LiSN-S (p ranging 0.47–0.75). A 1.2 dB improvement was found in the baseline condition of the LiSN-S, which incorporates no spatial separation between distracter and target stimuli (p < 0.01). Age did not significantly affect training outcomes (p = 0.21). No significant improvements were found posttraining on the self-report questionnaires (p = 0.84 and p = 0.20). Conclusions: This study has demonstrated that LiSN & Learn training does not significantly improve spatial processing deficits in adults or children with a sensorineural hearing loss. As auditory training did not prove to be effective, further research should be directed toward the development of hearing aid processing schemes that will compensate for the degraded interaural time difference and interaural level difference cues which underpin spatial processing.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Uppunda Ajith Kumar ◽  
A. V. Sangamanatha ◽  
Jai Vikas

The purpose of this study was to assess the temporal processing and speech perception abilities in older adults who were practicing meditation for more than five years. Participants were comprised of three groups, 30 young adults (“YA”) in the age range of 20–30 years, 30 older adults in the age range of 50–65 years who practiced meditation for a period of five years or more (effective meditators “EM”), and 51 age matched older adults who did not have any experience of meditation (non-meditators “NM”). Temporal processing was evaluated using gap detection in noise, duration discrimination, modulation detection, and backward masking and duration pattern tests. Speech perception was measured in presence of a four-talker babble at −5 dB signal to noise ratio and with the vocoded stimuli. Results revealed that EM group performed significantly better than NM group in all psychophysical and speech perception tasks except in gap detection task. In the gap detection task, two groups did not differ significantly. Furthermore, EM group showed significantly better modulation detection thresholds compared to YA. Results of the study demonstrate that the practice of meditation not only offsets the decline in temporal and speech processing abilities due to aging process but also improves the ability to perceive the modulations compared to young adults.


2016 ◽  
Vol 59 (3) ◽  
pp. 590-599 ◽  
Author(s):  
Mary Rudner ◽  
Sushmit Mishra ◽  
Stefan Stenfelt ◽  
Thomas Lunner ◽  
Jerker Rönnberg

Purpose Seeing the talker's face improves speech understanding in noise, possibly releasing resources for cognitive processing. We investigated whether it improves free recall of spoken two-digit numbers. Method Twenty younger adults with normal hearing and 24 older adults with hearing loss listened to and subsequently recalled lists of 13 two-digit numbers, with alternating male and female talkers. Lists were presented in quiet as well as in stationary and speech-like noise at a signal-to-noise ratio giving approximately 90% intelligibility. Amplification compensated for loss of audibility. Results Seeing the talker's face improved free recall performance for the younger but not the older group. Poorer performance in background noise was contingent on individual differences in working memory capacity. The effect of seeing the talker's face did not differ in quiet and noise. Conclusions We have argued that the absence of an effect of seeing the talker's face for older adults with hearing loss may be due to modulation of audiovisual integration mechanisms caused by an interaction between task demands and participant characteristics. In particular, we suggest that executive task demands and interindividual executive skills may play a key role in determining the benefit of seeing the talker's face during a speech-based cognitive task.


2020 ◽  
Vol 24 ◽  
pp. 233121652093616
Author(s):  
Maureen J. Shader ◽  
Sandra Gordon-Salant ◽  
Matthew J. Goupell

Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V249-V256
Author(s):  
Kai Lu ◽  
Zhaolun Liu ◽  
Sherif Hanafy ◽  
Gerard Schuster

To image deeper portions of the earth, geophysicists must record reflection data with much greater source-receiver offsets. The problem with these data is that the signal-to-noise ratio (S/N) significantly diminishes with greater offset. In many cases, the poor S/N makes the far-offset reflections imperceptible on the shot records. To mitigate this problem, we have developed supervirtual reflection interferometry (SVI), which can be applied to far-offset reflections to significantly increase their S/N. The key idea is to select the common pair gathers where the phases of the correlated reflection arrivals differ from one another by no more than a quarter of a period so that the traces can be coherently stacked. The traces are correlated and summed together to create traces with virtual reflections, which in turn are convolved with one another and stacked to give the reflection traces with much stronger S/Ns. This is similar to refraction SVI except far-offset reflections are used instead of refractions. The theory is validated with synthetic tests where SVI is applied to far-offset reflection arrivals to significantly improve their S/N. Reflection SVI is also applied to a field data set where the reflections are too noisy to be clearly visible in the traces. After the implementation of reflection SVI, the normal moveout velocity can be accurately picked from the SVI-improved data, leading to a successful poststack migration for this data set.


2009 ◽  
Vol 20 (01) ◽  
pp. 028-039 ◽  
Author(s):  
Elizabeth M. Adams ◽  
Robert E. Moore

Purpose: To study the effect of noise on speech rate judgment and signal-to-noise ratio threshold (SNR50) at different speech rates (slow, preferred, and fast). Research Design: Speech rate judgment and SNR50 tasks were completed in a normal-hearing condition and a simulated hearing-loss condition. Study Sample: Twenty-four female and six male young, normal-hearing participants. Results: Speech rate judgment was not affected by background noise regardless of hearing condition. Results of the SNR50 task indicated that, as speech rate increased, performance decreased for both hearing conditions. There was a moderate correlation between speech rate judgment and SNR50 with the various speech rates, such that as judgment of speech rate increased from too slow to too fast, performance deteriorated. Conclusions: These findings can be used to support the need for counseling patients and their families about the potential advantages to using average speech rates or rates that are slightly slowed while conversing in the presence of background noise.


2018 ◽  
Vol 39 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Yu-Hsiang Wu ◽  
Elizabeth Stangl ◽  
Octav Chipara ◽  
Syed Shabih Hasan ◽  
Anne Welhaven ◽  
...  

2006 ◽  
Vol 17 (03) ◽  
pp. 157-167 ◽  
Author(s):  
Rachel A. McArdle ◽  
Richard H. Wilson

The purpose of this study was to determine the list equivalency of the 18 QuickSIN™ (Quick Speech in Noise test) lists. Individuals with normal hearing (n = 24) and with sensorineural hearing loss (n = 72) were studied. Mean recognition performances on the 18 lists by the listeners with normal hearing were 2.8 to 4.3 dB SNR (signal-to-noise ratio), whereas the range was 10.0 to 14.3 dB SNR for the listeners with hearing loss. The psychometric functions for each list showed high performance variability across lists for listeners with hearing loss but not for listeners with normal hearing. For listeners with hearing loss, Lists 4, 5, 13, and 16 fell outside of the critical difference. The data from this study suggest nine lists that provide homogenous results for listeners with and without hearing loss. Finally, there was an 8.7 dB difference in performances between the two groups indicating a more favorable signal-to-noise ratio required by the listeners with hearing loss to obtain equal performance.


2004 ◽  
Vol 47 (5) ◽  
pp. 965-978 ◽  
Author(s):  
Richard A. Roberts ◽  
Jennifer J. Lister

Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection paradigm. This task is similar to binaural fusion paradigms used to measure the precedence effect. The purpose of this investigation was to determine if within-channel (measured with monotic and diotic gap detection) or across-channel (measured with dichotic gap detection) temporal resolution is related to fusion (measured with lag-burst thresholds; LBTs) under dichotic, anechoic, and reverberant conditions. Gap-detection thresholds (GDTs) and LBTs were measured by means of noise-burst stimuli for 3 groups of listeners: young adults with normal-hearing sensitivity (YNH), older adults with normal-hearing sensitivity (ONH), and older adults with impaired-hearing sensitivity (OIH). The GDTs indicated that across-channel temporal resolution is poorer than within-channel temporal resolution and that the effects of age and hearing loss are dependent on condition. Results for the fusion task indicated higher LBTs in reverberation than for the dichotic and anechoic conditions, regardless of group, and no effect of age or hearing loss for the nonreverberant conditions. However, higher LBTs were observed in the reverberant condition for the ONH listeners. Further, there was a correlation between across-channel temporal resolution and fusion in reverberation. Gap detection and fusion may not necessarily reflect the same underlying processes; however, across-channel gap detection may influence fusion under certain conditions (i.e., in reverberation).


Sign in / Sign up

Export Citation Format

Share Document