scholarly journals Improving distributed vulnerability assessment model of cybersecurity

2018 ◽  
Vol 331 ◽  
pp. 385-393
Author(s):  
Kálmán Hadarics ◽  
Ferenc Leitold

In the digital age more and more services and data are available over the Internet. Companies and public organizations becoming increasingly vulnerable related to hacks and cyberattacks. In order to provide successful online services, effective security initiatives and targeted protections are necessary to mitigate security risks. Effective cybersecurity more than deploying firewalls and other security software (e.g. antivirus, intrusion detection/prevention systems.). Through risk assessment and risk management practices we can identify critical parts of information systems and can transform them into security tactics. Furthermore in the Distributed Vulnerability Assessment (DVA) model three factors are identified: (1) characteristics and prevalence of cyber-threats, (2) vulnerabilities of IT infrastructure and its components and processes, (3) vulnerabilities deriving from users’ behavior. In this paper, we examine and improve our mathematical model of Distributed Vulnerability Assessment. This model can be extended for using additional information and considerations. This paper also presents a practical method which can be applied to eGovernment infrastructure and services also to reduce the impact of malware attacks of the information system.

2020 ◽  
Author(s):  
Pedro Rau ◽  
Wouter Buytaert ◽  
Fabian Drenkhan ◽  
Waldo Lavado ◽  
Juan Jimenez ◽  
...  

<p>The Peruvian Andes are a hotspot of vulnerabilities to impacts in water resources due to the propensity for water stress, the highly unpredictable weather, the sensitivity of glaciers, and the socio-economic vulnerability of its population. In this context, we selected the Vilcanota-Urubamba catchment in Southern Peru for addressing these challenges aiming at our objectives within a particular hydrological high-mountain context in the tropical Andes: a) Develop a fully-distributed, physically-based glacier surface energy balance model that allows for a realistic representation of glacier dynamics in glacier melt projections; b) Design and implement a glacio-hydrological monitoring and data collection approach to quantify non-glacial contributions to water resources and the impact of catchments interventions; c) Mapping of human water use at high spatiotemporal resolution and determining current and future levels of water (in)security; and d) Integrate last objectives in a glacier - water security assessment model and evaluate the tool's capacity to support locally embedded climate change adaptation strategies. </p><p>The RAHU project intends to transform the scientific understanding of the impact of glacier shrinkage on water security and, at the same time, to connect to and inform policy practices in Peru. It follows a "source to tap" paradigm, in which is planned to deliver a comprehensive and fully integrated water resources vulnerability assessment framework for glacier-fed basins, comprising state-of-the-art glaciology, hydrology, water demand characterisation, and water security assessment. It includes glacio-hydrological and water resources monitoring campaigns, to complement existing monitoring efforts of our project partners and collaborators, and new remotely sensed data sets. Those campaigns will be implemented using the principles and tools of participatory monitoring and knowledge co-creation that our team has pioneered in the tropical Andes. The datasets produced by this approach, combined with existing monitoring implemented by our team and collaborators, will allow us to build an integrated water supply-demand-vulnerability assessment model for glacierized basins, and to use this to evaluate adaptation strategies at the local scale. </p><p>This research is part of the multidisciplinary collaboration between British and Peruvian scientists (Newton Fund, Newton-Paulet).</p>


Due to the wide application of SCADA systems in national critical infrastructure, their cyber security issues and vulnerabilities have been a primary concern; whereas, the impact and consequences of cyber-attacks to these systems have the potential to result in catastrophic consequences in the physical domain. Therefore, estimating possible attack impacts and identifying system vulnerabilities are major concern in SCADA management and operations. However, it is quite difficult to plan, execute and review vulnerability analysis in critical infrastructure systems as well as in industrial control systems (such as SCADA system) due to its complexity, large-scale and heterogeneity. Consequently, a consistent domain-specific conceptual model is required to establish a generic framework for cyber security analysis to examine and investigate security threats on cyber-physical systems, the role of the entities within the system as well as system operations. The main contribution of this work is to present a multi-facets model to support cyber security analysis practices such as penetration testing, vulnerability assessment and risk analysis. The proposed model presents a common insight among different SCADA configurations, implementations and the employed protocols to handle its complexity, heterogeneous and scale. To demonstrate the usability as a proof of concept and applicability of the proposed model, the paper also presents an example illustrating how the proposed model can be employed to carry out security vulnerability assessment.


Author(s):  
Tongxu Wang ◽  
Xianyong Ma ◽  
Huanyu Li ◽  
Zejiao Dong

AbstractAsphalt pavement structures in cold regions, which suffer from complicated environmental and geological conditions, such as large temperature difference and frozen soil, are prone to cracking, rutting, and moisture damage. However, most of the existing assessment methodologies focus on the vulnerability of the overall road traffic network, ignoring the impact of regional differences and pavements’ structural performance. To establish a highly targeted vulnerability analysis methodology for cold regional asphalt pavements, the concept of highway vulnerability and the assessment model composed of exposure, fragility, and resilience were proposed in this paper firstly. Meanwhile, the assessment indices and standards for exposure, fragility, and resilience were respectively discussed. Then, the calculation process for each index weight and vulnerability index was proposed based on AHP-fuzzy comprehensive assessment methodology. Consequently, the vulnerability grade of asphalt pavements in cold regions could be determined. Finally, the vulnerability assessment indices and methodology for cold regional asphalt pavements were illustrated and presented, providing a theoretical basis for asphalt pavement performance evaluation and vulnerability assessment serviced under cold regional climate.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Ming Ji ◽  
Hongjun Guo ◽  
Yidong Zhang ◽  
Liang Cheng ◽  
Yinlin Ji

The vulnerability assessment model, composed by 11 vulnerability factors, is established with the introduction of the concept of “vulnerability” into the assessment of tunnel support system. Analytic hierarchy process is utilized to divide these 11 factors into human attributes and natural attributes, and define the weight of these factors for the model. The “vulnerability” applied io the assessment of the tunnel support system model is reached. The vulnerability assessment model was used for evaluating and modifying the haulage tunnel #3207 of Bo-fang mine panel #2. The results decreased the vulnerability of the tunnel support system and demonstrated acceptable effects. Furthermore, the results show that the impact of human attributes on tunnel support systems is dramatic under the condition that natural attributes are permanent, and the “vulnerability” is exactly a notable factor to manifest the transformation during this process. The results also indicate that optimizing human attributes can attenuate vulnerability in tunnel support systems. As a result, enhancement of stability of tunnel support systems can be achieved.


2017 ◽  
Vol 76 (10) ◽  
pp. 2742-2752 ◽  
Author(s):  
Alper Elçi

Abstract Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost–benefit perspective.


2018 ◽  
Vol 15 (2) ◽  
pp. 1-20
Author(s):  
Sabri Embi ◽  
Zurina Shafii

The purpose of this study is to examine the impact of Shariah governance and corporate governance (CG) on the risk management practices (RMPs) of local Islamic banks and foreign Islamic banks operating in Malaysia. The Shariah governance comprises the Shariah review (SR) and Shariah audit (SA) variables. The study also evaluates the level of RMPs, CG, SR, and SA between these two type of banks. With the aid of SPSS version 20, the items for RMPs, CG, SR, and SA were subjected to principal component analysis (PCA). From the PCA, one component or factor was extracted each for the CG, SR, and RMPs while another two factors were extracted for the SA. Primary data was collected using a self-administered survey questionnaire. The questionnaire covers four aspects ; CG, SR, SA, and RMPs. The data received from the 300 usable questionnaires were subjected to correlation and regression analyses as well as an independent t-test. The result of correlation analysis shows that all the four variables have large positive correlations with each other indicating a strong and significant relationship between them. From the regression analysis undertaken, CG, SR, and SA together explained 52.3 percent of the RMPs and CG emerged as the most influential variable that impacts the RMPs. The independent t-test carried out shows that there were significant differences in the CG and SA between the local and foreign Islamic banks. However, there were no significant differences between the two types of the bank in relation to SR and RMPs. The study has contributed to the body of knowledge and is beneficial to academicians, industry players, regulators, and other stakeholders.


2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


Sign in / Sign up

Export Citation Format

Share Document