scholarly journals New Updated Classification of Shallow Earthquakes Based on Faulting Style

2020 ◽  
pp. 103-111
Author(s):  
Emad Abulrahman Mohammed Salih Al-Heety

Earthquakes occur on faults and create new faults. They also occur on  normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. The majority of normal and strike-slip earthquakes occurred in the upper crust, while the reverse earthquakes occurred throughout the thickness of the crust. The main trend for the derived b-values for the three classes was: b normal fault>bstrike-slip fault>breverse fault.  The mean return period for the normal earthquake was longer than that of the strike-slip earthquakes, while the reverse earthquakes had the shortest period. The obtained results report the relationship between the magnitude and focal depth of the normal earthquakes. A negative significant correlation between the magnitude and dip class for the normal and reverse earthquakes is reported. Negative and positive correlation relations between the focal depth and dip class were recorded for normal and reverse earthquakes, respectively. The suggested classification of earthquakes provides significant information to understand seismicity, seismtectonics, and seismic hazard analysis.

2021 ◽  
Vol 54 (1D) ◽  
pp. 1-10
Author(s):  
Emad Al-Heety

The earthquake size distribution (b-value) is a significant factor to recognize the seismic activity, seismotectonic, and seismic hazard assessment. In the current work, the connection of the b-constant value with the focal depth and mechanism was studied. The effect of the study scale (global, regional and local) on the dependence of b-value on the focal mechanisms was investigated. The database is quoted from the Global Centroid Moment Tensor catalog. The selected earthquakes are the shallow normal, reverse and strike-slip events. The completeness magnitude (Mc) is 5.3. The maximum likelihood method is utilized to compute the b-value. The obtained results show that the b-value is decreasing with depth to range 10-20 km, then increases to the depth of 40km. The turning point of b-value (increasing of b-value) locates at the depth of the transition brittle-ductile zone. Globally and regionally, low, moderate, and high b-values are associated with reverse, strike-slip, and normal focal mechanisms, respectively, while locally, the relation between b-values and focal mechanisms shows different association trends, such as low, moderate, and high b-values are associated with normal, strike-slip, and reverse focal mechanisms and so on.


Proceedings ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 7
Author(s):  
Sandeep Kumar Aggarwal

Talala is an excellent example of triggered neo-tectonic seismicity between two dams during a monsoon. An earthquake of Mmax 5.1 on 6 November 2007 at 21.16° N; 70.54° E, with a focal depth of 4.5 km and complete sequence, was first-time recorded on the latest broadband sensor. This found a dam/monsoon-induced earthquake preceded by 18 foreshocks of 2 ≤ Mw ≤ 4.8 within 9 h 11 minute, as well as smaller shocks that may not have been recorded because of sparse network coverage. After the deployment of local mobile observatories, aftershocks of Mw ≥ 1.0, which continued for months and subsided to background seismicity after four months, were recorded. The same kind of phenomena repeated, with Mmax 5.0 on 20 October 2011 at 21.06° N; 70.50° E, focal depth 5.5 km, which implies that the potential to generate dam/monsoon-induced seismicity took nearly four years again. These phenomena continued and the sequence was recorded by a network of 10 broadband seismographs (three in the Talala area and seven at an epicentral distance of 30 to 300 km). Centroid Moment Tensor (CMT) solutions and spectral source parameters of mainshock and aftershocks are evaluated to understand the seismotectonic of the region. The CMT depicts a major strike-slip motion along East North East-West South West with a left-lateral plane at 4.5 km depth. This indicates a sympathetic fault extension of the Son-Narmada fault. The source parameters of 400 shocks of Mw 1.0 to 5.1 found seismic moment 1011 to 1016.5 N-m, source radii 120–850 meter, and a stress drop of 0.003 to 25.43 Mpa. The b-value, p-value, fractal dimension, and slip on estimated different faults. The comparison between Talala and Koyna dam-induced source parameters tries to establish a comparison of seismicity from different parts of the world.


2012 ◽  
Author(s):  
Irwan Setyowidodo, Bagus Jaya Santosa

Penelitian ini melakukan analisis inversi waveform 3 komponen terhadap data gempa bumi yang  terjadi  di  Manokwari  Papua  pada  tanggal  3  Januari  2009  pukul  19:43:55  GMT  dengan magnitude  7.1  Mw  yang  episentrumnya  berada  pada  lattitude  -0.70541,  longitude  125.8455  dan kedalaman 25 km. Data yang digunakan dalam penelitian ialah, data seismik lokal yang diunduh dari data  gempa  IA.  Selanjutnya  dilakukan  proses   inversi  data  waveform  tiga  komponen  dengan menggunakan  metode  iterasi  dekonvolusi.  Metode  ini  diimplementasikan  dalam  software  ISOLA yang  dikembangkan   untuk  mendapatkan  parameter-parameter  sumber  gempa  bumi.  Parameter- parameter  gempa ini tergambarkan dalam Centroid Moment Tensor dan parameter sesar penyebab gempa. Selanjutnya, hasil parameter-patameter  tersebut digunakan untuk  mengetahui arah  patahan yang sebenarnya (fault-plane) dengan menggunakan metode H-C. Seismogram sintetik dihitung dengan ISOLA yang inputnya adalah model bumi dan data seismogram yang  direkam  oleh  stasiun  seismologi  BAK,  LBM  dan  JAY.  Hasil   interpretasi  atas  analisis seismogram   waveform   tiga   komponen   menunjukkan   bahwa   orientasi   bidang   patahan   gempa Manokwari Papua pada tanggal 3 Januari 2009 memiliki sudut dip 54o       terhadap bidang  horizontal yang menyebabkan zona patahan di daerah tersebut mudah bergeser dan mudah terjadi gempa. Hasil analisis  ini  diketahui  bahwa  sesar  penyebab  gempa  bumi  ini  ialah  sesar  strike-slip  oblique  yang bergerak dari  arah barat  laut - tenggara. Sumber  gempa  bumi  yang terjadi tersebut terjadi akibat aktivitas Sesar Sorong yang terdapat di bagian utara Manokwari.<br /><br /><br /><br />


2020 ◽  
Author(s):  
Richard Walters ◽  
Tim Craig ◽  
Laura Gregory ◽  
Russell Azad Khan

&lt;p&gt;Large continental earthquakes necessarily involve cascading rupture of multiple faults or segments (e.g. El Mayor-Cucapah 2010). But these same critically-stressed systems sometimes rupture in drawn-out sequences of smaller earthquakes over days or years (e.g. Central Italy 2016), instead of in a single large event. Due to the similarity in the initial conditions of both scenarios, seismic sequences may be considered as &amp;#8216;failed&amp;#8217; multi-segment earthquakes, whereby cascading rupture is prematurely halted before all available slip deficit is released.&lt;/p&gt;&lt;p&gt;These two modes of strain-release have vastly different implications for seismic hazard. Recent work on the 2016 Central Italy earthquake sequence, which is the first seismic sequence to be studied with modern high-quality geodetic and seismological datasets, showed that complexity in fault structure appeared to exercise a dual control on both the timing and sizes of events throughout this sequence. However, it is unclear if this structural control is common for all continental seismic sequences, how important seismic sequences are for the global seismic moment budget, and how this contribution to moment budget may vary between different tectonic regions.&lt;/p&gt;&lt;p&gt;Here we select shallow crustal continental earthquakes from the Global Centroid Moment Tensor catalog, and identify seismic sequences as agglomerates of clustered pairs of earthquakes where the summed moment (M&lt;sub&gt;0&lt;/sub&gt;) of all aftershocks is greater than 50% of the M&lt;sub&gt;0&lt;/sub&gt; of the first event in the sequence. We analyse the relative number of seismic sequences compared to other earthquakes for normal, reverse, and strike-slip faulting regions, and also calculate the relative M&lt;sub&gt;0&lt;/sub&gt; release of seismic sequences and other earthquakes in these three regimes.&lt;/p&gt;&lt;p&gt;We find that although seismic sequences are equally common by number in all continental tectonic regimes, seismic sequences account for a much higher proportion of M&lt;sub&gt;0&lt;/sub&gt; release for normal faults (~20%) than for reverse faults (~10%), with strike-slip faults intermediate between these two end-members. We also find that the proportion of M&lt;sub&gt;0&lt;/sub&gt; release in seismic sequences is higher for events that occur in regions characterised by a diversity of different earthquake types (e.g. both reverse and strike-slip faulting) than for events that occur in regions characterised by a single earthquake type (e.g. strike-slip faulting only). Together these findings imply that complexity of fault network is an important factor in controlling the occurrence of large-M&lt;sub&gt;0&lt;/sub&gt; seismic sequences, and that &amp;#8216;failed&amp;#8217; multi-segment earthquakes and therefore large-M&lt;sub&gt;0&lt;/sub&gt; seismic sequences are more likely to occur in regions with complex fault networks.&lt;/p&gt;


1996 ◽  
Vol 86 (3) ◽  
pp. 832-842 ◽  
Author(s):  
Akio Katsumata

Abstract The magnitude, MJMA, estimated by the Japan Meteorological Agency (JMA) is generally referred to in Japan for the regional seismicity in the area. MJMA is determined from maximum displacement amplitudes of the total seismic wave traces. For earthquakes shallower than 60 km, MJMA is determined by Tsuboi's formula, and for earthquakes deeper than 60 km, by Katsumata's formula. These relations were designed to give almost the same magnitude value as that of Gutenberg and Richter. We compared MJMA with moment magnitude, MW, which can be calculated from the centroid moment tensor (CMT) solutions. It was found that the average difference between MJMA and MW is not significant for shallow earthquakes in the magnitude range from 5 to 7, but it is significant at a low level for the earthquakes of deeper foci. The averaged difference reaches about 0.4 magnitude units for the focal depth of 600 km. We derived an attenuation function for the maximum displacement amplitude assuming the validity of the moment magnitude. This relation between epicentral distance and amplitude for shallow earthquakes is almost identical to the one calculated from Tsuboi's formula. It is suggested that the estimated attenuation function for deep-focus earthquakes reflects the specific Q and velocity structure that is peculiar to the subduction zone.


2021 ◽  
Vol 873 (1) ◽  
pp. 012022
Author(s):  
A W Baskara ◽  
D P Sahara ◽  
A D Nugraha ◽  
A Muhari ◽  
A A Rusdin ◽  
...  

Abstract The Ambon Mw 6.5 earthquake on September 26th, 2019, had contributed to give severe damages and significantly increased seismicity around Ambon Island and surrounding areas. Mainshock was followed by aftershocks with spatial distribution added to the impact of destructions in this region. We investigated aftershocks sequences to reveal the effect of mainshock toward the change in the in-situ stress field, including the possibility of the existing faults reactivation and the generation of aftershocks. We inferred centroid moment tensor (CMT) for significant aftershock events with Mw more than 4.0 using waveform data recorded from October 18th to December 15th, 2019. The aftershock focal mechanism was determined using the Bayesian full-waveform inversion code ISOLA-Obspy. This approach provides the uncertainty of the CMT model parameters. From ten CMT solution we had inferred in three seismic clusters, we found that majority of events have a strike-slip mechanism. Four events located on the south of the N-S trendings have a dextral strike-slip fault type, reflected the rupture of the mainshocks fault plane. Three events in the cluster of Ambon Island are dextral strike-slip, confirming the presence of the fault reactivation. Meanwhile, three CMT solutions in the north show the dextral strike-slip faulting and may belong to the mainshock main fault, connected with the cluster in the south.


2021 ◽  
Vol 9 ◽  
Author(s):  
Melissa O. Anderson ◽  
Chantal Norris-Julseth ◽  
Kenneth H. Rubin ◽  
Karsten Haase ◽  
Mark D. Hannington ◽  
...  

The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two notable features of the NE Lau Basin: 1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and 2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ∼120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, the Riedel structures identified in this study directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism.


2021 ◽  
Vol 11 (24) ◽  
pp. 12166
Author(s):  
Matteo Taroni ◽  
Jacopo Selva ◽  
Jiancang Zhuang

The use of the tapered Gutenberg-Richter distribution in earthquake source models is rapidly increasing, allowing overcoming the definition of a hard threshold for the maximum magnitude. Here, we expand the classical maximum likelihood estimation method for estimating the parameters of the tapered Gutenberg-Richter distribution, allowing the use of a variable through-time magnitude of completeness. Adopting a well-established technique based on asymptotic theory, we also estimate the uncertainties relative to the parameters. Differently from other estimation methods for catalogs with a variable completeness, available for example for the classical truncated Gutenberg-Richter distribution, our approach does not need the assumption on the distribution of the number of events (usually the Poisson distribution). We test the methodology checking the consistency of parameter estimations with synthetic catalogs generated with multiple completeness levels. Then, we analyze the Atlantic ridge seismicity, using the global centroid moment tensor catalog, finding that our method allows better constraining distribution parameters, allowing the use more data than estimations based on a single completeness level. This leads to a sharp decrease in the uncertainties associated with the parameter estimation, when compared with existing methods based on a single time-independent magnitude of completeness. This also allows analyzing subsets of events, to deepen data analysis. For example, separating normal and strike-slip events, we found that they have significantly different but well-constrained corner magnitudes. Instead, without distinguishing for focal mechanism and considering all the events in the catalog, we obtain an intermediate value that is relatively less constrained from data, with an open confidence region.


1981 ◽  
Vol 71 (4) ◽  
pp. 1369-1372
Author(s):  
Jay J. Pulli ◽  
Michael J. Guenette

abstract On 23 November 1980, a small (magnitude 2.9) earthquake occurred on the Chelmsford-Lowell, Massachusetts, border, approximately 10 km northeast of the MIT seismic station at Westford, Massachusetts (WFM). Thus we were able to accurately determine the focal depth, which is generally not the case in New England. Our hypocentral solution was latitude 41.63, longitude −71.36, depth 1.5 km, at origin time 00:39:32.0 UTC. The fault plane solution shows either strike-slip or dip-slip faulting with a P axis trending NE-SW, which is in agreement with overcoring measurements in a nearby granite quarry.


Sign in / Sign up

Export Citation Format

Share Document