scholarly journals On The Mathematical Model of Two- Prey and Two-Predator Species

2020 ◽  
pp. 608-619
Author(s):  
A. G. Frahan

In this work, we study two species of predator with two species of prey model, where the two species of prey live in two diverse habitats and have the ability to group-defense. Only one of the two predators tends to switch between the habitats. The mathematical model has at most 13 possible equilibrium points, one of which is the point of origin, two are axial, tow are interior points and the others are boundary points. The model with , where n is the switching index, is discussed regarding the boundedness of its solutions and the local stability of its equilibrium points. In addition, a basin of attraction was created for the interior point. Finally, three numerical examples were given to support the theoretical results.

Author(s):  
Sudhakar Yadav ◽  
Vivek Kumar

This study develops a mathematical model for describing the dynamics of the banana-nematodes and its pest detection method to help banana farmers. Two criteria: the mathematical model and the type of nematodes pest control system are discussed. The sensitivity analysis, local stability, global stability, and the dynamic behavior of the mathematical model are performed. Further, we also develop and discuss the optimal control mathematical model. This mathematical model represents various modes of management, including the initial release of infected predators as well as the destroying of nematodes. The theoretical results are shown and verified by numerical simulations.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450133 ◽  
Author(s):  
Haijun Wang ◽  
Xianyi Li

After a 3D Lorenz-like system has been revisited, more rich hidden dynamics that was not found previously is clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles as well as homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b > 0. All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper is to not only show those dynamical properties hiding in this system, but also (more mainly) present a kind of way and means — both "locally" and "globally" and both "finitely" and "infinitely" — to comprehensively explore a given system.


Author(s):  
Amit Ailon

The paper solves some control problems of mobile robots as both kinematics and dynamics are intertwined in the mathematical model. The problems of driving the vehicle to a desired configuration in a specified time and tracking a reference trajectory are considered. The control problems associated with motion in convoy and rigid formations of a group of vehicles are studied and some results are demonstrated by numerical examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Isa Abdullahi Baba ◽  
Bashir Abdullahi Baba ◽  
Parvaneh Esmaili

In this paper, we developed a model that suggests the use of robots in identifying COVID-19-positive patients and which studied the effectiveness of the government policy of prohibiting migration of individuals into their countries especially from those countries that were known to have COVID-19 epidemic. Two compartmental models consisting of two equations each were constructed. The models studied the use of robots for the identification of COVID-19-positive patients. The effect of migration ban strategy was also studied. Four biologically meaningful equilibrium points were found. Their local stability analysis was also carried out. Numerical simulations were carried out, and the most effective strategy to curtail the spread of the disease was shown.


Author(s):  
Nita H. Shah

Now-a-days, the offer of credit period to the customer for settling the account for the units purchased by the supplier is considered to be the most beneficial policy. In this article, an attempt is made to formulate the mathematical model for a customer to determine optimal special cycle time when the supplier offers the special extended credit period for one time only during a special period. A decision policy for a retailer is developed to find optimal special cycle time. The theoretical results and effects of various parameters are studied by appropriate dataset.


2017 ◽  
Vol 27 (07) ◽  
pp. 1750098 ◽  
Author(s):  
Junhai Ma ◽  
Ting Li ◽  
Wenbo Ren

This paper examines the optimal decisions of dual-channel game model considering the inputs of retailing service. We analyze how adjustment speed of service inputs affect the system complexity and market performance, and explore the stability of the equilibrium points by parameter basin diagrams. And chaos control is realized by variable feedback method. The numerical simulation shows that complex behavior would trigger the system to become unstable, such as double period bifurcation and chaos. We measure the performances of the model in different periods by analyzing the variation of average profit index. The theoretical results show that the percentage share of the demand and cross-service coefficients have important influence on the stability of the system and its feasible basin of attraction.


1989 ◽  
Vol 56 (3) ◽  
pp. 710-712
Author(s):  
Max D. Gunzburger ◽  
Houston G. Wood ◽  
Rosser L. Wayland

Onsager’s pancake equation for the fluid dynamics of a gas centrifuge is modified for the case of centrifuges with baffles which render the flow domain doubly connected. A finite element algorithm is used for solving the mathematical model and to compute numerical examples for flow fields induced by thermal boundary conditions and by mass injection and extraction.


Author(s):  
Erkan Taşdemir

In this paper, we investigate the equilibrium points, stability of two equilibrium points, convergences of negative equilibrium point, periodic solutions, and existence of bounded or unbounded solutions of a system of nonlinear difference equations xn+1 =xn-1yn - 1, yn+1 = yn-1xn - 1 n = 0,1,..., where the initial values are real numbers. Additionally we present some numerical examples to verify our theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Firas Hussean Maghool ◽  
Raid Kamel Naji

The avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels. It is assumed that the generalist predator grows logistically using the Leslie-Gower type of growth function. All the solution properties of the model are studied. Local dynamics behaviors are investigated. The basin of attraction for each equilibrium is determined using the Lyapunov function. The conditions of persistence of the model are specified. The study of local bifurcation in the model is done. Numerical simulations are implemented to show the obtained results. It is watched that the system is wealthy in its dynamics including chaos. The fear factor works as a stabilizing factor in the system up to a specific level; otherwise, it leads to the extinction of the predator. However, increasing the prey’s group defense leads to extinction in predator species.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Abdul Khaliq ◽  
H. S. Alayachi ◽  
M. S. M. Noorani ◽  
A. Q. Khan

In this paper, we study the equilibrium points, local asymptotic stability of equilibrium points, global behavior of equilibrium points, boundedness and periodicity of the rational recursive sequence wn+1=wn−pα+βwn/γwn+δwn−r, where γwn≠−δwn−r for r∈0,∞, α, β, γ, δ∈0,∞, and r>p≥0. With initial values w−p,w−p+1,…,w−r,w−r+1,…,w−1, and w0 are positive real numbers. Some numerical examples are given to verify our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document