scholarly journals Electrochemical Polymerization and Biological Activity of 4-(Nicotinamido)-4-Oxo-2-Butenoic Acid as An Anticorrosion Coating on A 316L Stainless Steel Surface

2021 ◽  
pp. 729-741
Author(s):  
Sana A. Habeeb ◽  
Khulood A. Saleh

In this study, poly4-(nicotinamido)-4-oxo-2-butenoic acid (PNOE) was prepared by the electro polymerization of 4-(nicotinamido)-4-oxo-2-butenoic acid (NOE) monomer on a 316 stainless steel (St.St) which acts as an anticorrosion coating.  Fourier transforms infrared (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and cyclic voltammetry were used to diagnose the structure and the properties of the prepared polymer layer. The corrosion behavior of the uncoated and coated 316  St.St were evaluated by using an electro chemical polarization technique in 0.2 M hydrochloric acid  solution as a corrosive medium at a temperature range of 293 to 323 K. Nano materials, such as nano ZnO and graphene were added in different concentrations to the monomer solution for improving  the corrosion resistance  of the 316 St.St surface. The results showed that the values of protection efficiencies of the polymeric coating were increased after adding the nano materials. The kinetic and thermodynamic activation parameters were also calculated and the biological activity of the polymer film against Gram negative and positive bacteria was studied.

2020 ◽  
pp. 2467-2478
Author(s):  
Amaal S. Sadiq ◽  
Entesar O. Al-Tamimi

A series of polymers containing1,2,4-triazole  and tetrazole groups in their main chains were synthesized through several steps. Poly(acryloyl hydrazide) was first prepared and then subjected to a hydrazide reaction with phenyl isothiocyanate to give a 1,2,4-triazole ring (2). This polymer was introduced into a reaction with chloro acetylchloride to yield polymer (3), which was refluxed with sodium azide to give polymer (4). Polymer (5) was synthesized by the reaction of polymer (4) with  acrylonitrile in the presence of NH4Cl as a catalyst. Finally, polymer (6) was synthesized by the electrochemical polymerization of polymer (5) using  316L stainless steel as an anti-corrosion coating. Polymer-coated and uncoated stainless steel was tested for corrosion safety in a solution of 0.1 M HCl, followed by Tafel and Potentiostatic procedures at a temperature of 293 K. Nano materials such as ZnO were applied to the monomer solution at different concentrations to enhance the corrosion resistance of the 316L stainless steel surface. The results showed that the performance values of corrosion protection for the polymer coating were increased with the introduction of the nano materials. Furthermore, 13C-NMR, 1H-NMR, and FTIR were recorded to confirm the structures of the poylmers, while their physical properties were tested using atomic force microscope (AFM) and scanning electron microscope (SEM).


Author(s):  
Muna I Khalaf ◽  
Khulood A Saleh ◽  
Khalil S Khalil

Electro polymerization of N-benzothiazolyl maleamic acid (NBM) was carried out on stainless steel plate electrode in a protic medium of monomer aqueous solution using electrochemical oxidation procedure in electrochemical cell.Spectroscopic characterization techniques were investigated to obtain information about the chemical structure of polymer. The anti-corrosion action of polymer was investigated on stainless steel by electrochemical polarization method. In addition, the effect of adding nanomaterial (TiO2, ZnO (bulk-nano)) to monomer solution on the corrosion behavior of stainless steel was investigated. The results obtained showed that the corrosion rate of S-steel increased with temperature increase from 293K to 323K and the values of inhibition efficiency by coating polymer increase with nanomaterial addition. Apparent energies of activation have been calculated for the corrosion process of S-steel in acidic medium before and after polymeric coating. Furthermore were studied the effect of the preparing polymer on some strain of bacteria.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1055
Author(s):  
Gonzalez A. S. ◽  
Riego Á. ◽  
Vega V. ◽  
García J. ◽  
Galié S. ◽  
...  

In our study, we demonstrated the performance of antimicrobial coatings on properly functionalized and nanostructured 316L food-grade stainless steel pipelines. For the fabrication of these functional coatings, we employed facile and low-cost electrochemical techniques and surface modification processes. The development of a nanoporous structure on the 316L stainless steel surface was performed by following an electropolishing process in an electrolytic bath, at a constant anodic voltage of 40 V for 10 min, while the temperature was maintained between 0 and 10 °C. Subsequently, we incorporated on this nanostructure additional coatings with antimicrobial and bactericide properties, such as Ag nanoparticles, Ag films, or TiO2 thin layers. These functional coatings were grown on the nanostructured substrate by following electroless process, electrochemical deposition, and atomic layer deposition (ALD) techniques. Then, we analyzed the antimicrobial efficiency of these functionalized materials against different biofilms types (Candida parapsilosis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis). The results of the present study demonstrate that the nanostructuring and surface functionalization processes constitute a promising route to fabricate novel functional materials exhibiting highly efficient antimicrobial features. In fact, we have shown that our use of an appropriated association of TiO2 layer and Ag nanoparticle coatings over the nanostructured 316L stainless steel exhibited an excellent antimicrobial behavior for all biofilms examined.


2018 ◽  
Vol 154 ◽  
pp. 01114 ◽  
Author(s):  
Aria Riswanda ◽  
Indro Pranoto ◽  
Deendarlianto ◽  
Indarto ◽  
Teguh Wibowo

Multiple droplets are drops of water that continuously dropped onto a surface. Spray cooling is an application of the use of droplet on a cooling system. Spray cooling is usually used in a cooling system of electronic devices, and material quenching. In this study, correlations between Weber number and surface temperature decrease rate during multiple droplets impingement are investigated and analyzed. Visualization process is used to help determine the evaporation time of droplets impingement by using high speed camera. Induction stove is used to maintain a stainless steel surface temperature at 120°C, 140°C, and 160°C. The Weber number was varied at 15, and 52.5 to simulate low and medium Weber number. The result of this study shows that increase in Weber number does not increase the temperature decrease rate noticeably. Whereas the Weber number decrease the time required for surface temperature to reach its lowest surface temperature. It was also found that for low and medium Weber number, Weber number affect the evaporation time of multiple droplets after impingement.


1998 ◽  
Vol 97 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Paul R. Rennie ◽  
X.D. Chen ◽  
Antony R. Mackereth

Sign in / Sign up

Export Citation Format

Share Document