scholarly journals A Stochastic Differential Equations Model for the Spread of Coronavirus COVID-19): The Case of Iraq

2021 ◽  
pp. 1025-1035
Author(s):  
Ahmed M. Kareem ◽  
Saad Naji Al-Azzawi

In this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible  -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the  deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly illustrated by Computer simulation.

2016 ◽  
Vol 10 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Yingjia Guo

In order to deal with non-differentiable functions, a modification of the Riemann–Liouville definition is recently proposed which appears to provide a framework for a fractional calculus which is quite parallel with classical calculus. Based on these new results, we study on the fractional SIR model in this paper. First, we give the general solution of the fractional differential equation. And then a unique global positive solution of the SIR model is obtained. Furthermore, we get the Lyapunov stability theory. By using this stability theory, the asymptotic stability of the positive solution is analyzed.


2016 ◽  
Vol 6 (2) ◽  
pp. 154
Author(s):  
Shuai Shao ◽  
Hao Li ◽  
Yuanbiao Zhang ◽  
Kailong Li

<p class="zhengwen">In this paper, we have established a SECADI model on the basis of the traditional epidemic model and under the consideration of factors such as the spread of the disease, the quantity of the medicine in need, the medicine production speedetc. We have improved the crowd classification standard and the spread styledifferential equation model in classical SIR model. We distinguished the crowd into six categories, including the susceptible, the exposed, the curable, the advanced, the dead and the immune, and we established integrated transformation relationships between them after taking control measures through qualitative and quantitative method, and then derive the adequate epidemic differential equation model before taking controls. We applied the method of computer simulation to solve the model, worked out uncertain parameters with the method of parameter identification, and we verified the validity and accuracy of the SECADI model. Meanwhile, we calculated with the actual data of Ebola in the epidemic area in WesternAfrica, simulated the evolution of the epidemic, analyze and offered effective approaches to control the epidemic situation. We further discussed development directions of this model in the end.</p>


2011 ◽  
Vol 54 (1-2) ◽  
pp. 221-232 ◽  
Author(s):  
Daqing Jiang ◽  
Jiajia Yu ◽  
Chunyan Ji ◽  
Ningzhong Shi

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yanfeng Liang ◽  
David Greenhalgh ◽  
Xuerong Mao

We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.


2013 ◽  
Vol 10 (88) ◽  
pp. 20130650 ◽  
Author(s):  
Samik Datta ◽  
James C. Bull ◽  
Giles E. Budge ◽  
Matt J. Keeling

We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae , that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected ‘occult’ infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction.


2021 ◽  
Vol 20 (5) ◽  
pp. 1-34
Author(s):  
Edward A. Lee

This article is about deterministic models, what they are, why they are useful, and what their limitations are. First, the article emphasizes that determinism is a property of models, not of physical systems. Whether a model is deterministic or not depends on how one defines the inputs and behavior of the model. To define behavior, one has to define an observer. The article compares and contrasts two classes of ways to define an observer, one based on the notion of “state” and another that more flexibly defines the observables. The notion of “state” is shown to be problematic and lead to nondeterminism that is avoided when the observables are defined differently. The article examines determinism in models of the physical world. In what may surprise many readers, it shows that Newtonian physics admits nondeterminism and that quantum physics may be interpreted as a deterministic model. Moreover, it shows that both relativity and quantum physics undermine the notion of “state” and therefore require more flexible ways of defining observables. Finally, the article reviews results showing that sufficiently rich sets of deterministic models are incomplete. Specifically, nondeterminism is inescapable in any system of models rich enough to encompass Newton’s laws.


2018 ◽  
Vol 26 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Modeste N’zi ◽  
Ilimidi Yattara

AbstractWe treat a delayed SIR (susceptible, infected, recovered) epidemic model with a saturated incidence rate and its perturbation through the contact rate using a white noise. We start with a deterministic model and then add a perturbation on the contact rate using a white noise to obtain a stochastic model. We prove the existence and uniqueness of the global positive solution for both deterministic and stochastic delayed differential equations. Under suitable conditions on the parameters, we study the global asymptotic stability of the disease-free equilibrium of the deterministic model and the almost sure stability of the disease-free equilibrium of the stochastic model.


Sign in / Sign up

Export Citation Format

Share Document