scholarly journals Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans

2021 ◽  
pp. 2099-2109
Author(s):  
Maad M. Mijwil

COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The experimental outcomes of this study confirmed that the supported vector machine technique has high accuracy and excellent performance in the classification of the disease, as reflected by values of 91.8% accuracy, 91.7% sensitivity, 95.9% specificity, 91.8% F1-score, and 97.6% AUC.

2021 ◽  
Author(s):  
Thanakorn Poomkur ◽  
Thakerng Wongsirichot

The coronavirus disease of 2019 (COVID-19) has been declared a pandemic and has raised worldwide concern. Lung inflammation and respiratory failure are commonly observed in moderate-to-severe cases. Chest X-ray imaging is compulsory for diagnosis, and interpretation is commonly performed by skilled medical specialists. Many studies have been conducted using machine learning approaches such as Deep Learning (DL) with acceptable accuracy. However, other dimensions such as computational time were less discussed. Thus, our work is motivated to design anew computer-aided diagnosis (CADx) tool for identifying chest X-ray images of COVID-19 infection using machine learning techniques including Decision Tree (DT), Support Vector Machine (SVM), and Neural Networks (NNs). Our work is designed with the concept of multi-layer classification architecture and performs with minimal computational time and acceptable classification results. First, image segmentation, image enhancement and feature extraction techniques are performed. Second, machine learning techniques are selected based on classification performance. Finally, selected machine learning techniques are assembled into a multi-layer hybrid classification model for COVID-19 (MLHC-COVID-19). Specifically, the MLHC-COVID-19 consists of two layers, Layer I: Healthy and Unhealthy; Layer II: COVID-19 and non-COVID-19.


Author(s):  
Abdelmoty Ahmed ◽  
Gamal Tharwat ◽  
Belgacem Bouallegue ◽  
Mahmoud Khattab ◽  
Ahmad Al Moustafa ◽  
...  

Machine Learning has completely transformed health care system, which transmits medical data through IOT sensors. So it is very important to encrypt them to protect patient data. encrypting medical images from a performance perspective consumes time; hence the use of an auto encoder is essential. An auto encoder is used in this work to compress the image as a vector prior to the encryption process. The digital image passes across description function and a decoder to get back the image in the proposed work; various experiments are carried out on hyper parameters to achieve the highest outcome of the classification. The findings demonstrate that the combination of Mean Square Logarithmic Error as the loss function, ADA grad as an optimizer, two layers for the encoder, and another reverse for the decoder, RELU as the activation function generates the best auto encoder results. The combination of Mean square error (lose function), RMS prop (optimizer), three layers for the encoder and another reverse for the decoder, and RELU (activation function) has the best classification result. All the experiments with different hyper parameter has run almost very close to each other even when changing the number of layers. The running time is between 9 and 16 second for each epoch.


Covid-19 ◽  
2021 ◽  
pp. 241-278
Author(s):  
Parag Verma ◽  
Ankur Dumka ◽  
Alaknanda Ashok ◽  
Amit Dumka ◽  
Anuj Bhardwaj

2020 ◽  
Vol 13 (1-2) ◽  
pp. 43-52
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács

AbstractClassification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yar Muhammad ◽  
Mohammad Dahman Alshehri ◽  
Wael Mohammed Alenazy ◽  
Truong Vinh Hoang ◽  
Ryan Alturki

Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease.


2019 ◽  
Author(s):  
Rushikesh Chavan ◽  
Jidnasa Pillai ◽  
Shravani Holkar ◽  
Prajyot Salgaonkar ◽  
Prakash Bhise

2019 ◽  
Vol 11 (13) ◽  
pp. 1600 ◽  
Author(s):  
Flávio F. Camargo ◽  
Edson E. Sano ◽  
Cláudia M. Almeida ◽  
José C. Mura ◽  
Tati Almeida

This study proposes a workflow for land use and land cover (LULC) classification of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images of the Brazilian tropical savanna (Cerrado) biome. The following LULC classes were considered: forestlands; shrublands; grasslands; reforestations; croplands; pasturelands; bare soils/straws; urban areas; and water reservoirs. The proposed approach combines polarimetric attributes, image segmentation, and machine-learning procedures. A set of 125 attributes was generated using polarimetric ALOS-2/PALSAR-2 images, including the van Zyl, Freeman–Durden, Yamaguchi, and Cloude–Pottier target decomposition components, incoherent polarimetric parameters (biomass indices and polarization ratios), and HH-, HV-, VH-, and VV-polarized amplitude images. These attributes were classified using the Naive Bayes (NB), DT J48 (DT = decision tree), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) algorithms. The RF, MLP, and SVM classifiers presented the most accurate performances. NB and DT J48 classifiers showed a lower performance in relation to the RF, MLP, and SVM. The DT J48 classifier was the most suitable algorithm for discriminating urban areas and natural vegetation cover. The proposed workflow can be replicated for other SAR images with different acquisition modes or for other types of vegetation domains.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


2021 ◽  

Background: The SARS-CoV-2 virus has demonstrated the weakness of many health systems worldwide, creating a saturation and lack of access to treatments. A bottleneck to fight this pandemic relates to the lack of diagnostic infrastructure for early detection of positive cases, particularly in rural and impoverished areas of developing countries. In this context, less costly and fast machine learning (ML) diagnosis-based systems are helpful. However, most of the research has focused on deep-learning techniques for diagnosis, which are computationally and technologically expensive. ML models have been mainly used as a benchmark and are not entirely explored in the existing literature on the topic of this paper. Objective: To analyze the capabilities of ML techniques (compared to deep learning) to diagnose COVID-19 cases based on X-ray images, assessing the performance of these techniques and using their predictive power for such a diagnosis. Methods: A factorial experiment was designed to establish this power with X-ray chest images of healthy, pneumonia, and COVID-19 infected patients. This design considers data-balancing methods, feature extraction approaches, different algorithms, and hyper-parameter optimization. The ML techniques were evaluated based on classification metrics, including accuracy, the area under the receiver operating characteristic curve (AUROC), F1-score, sensitivity, and specificity. Results: The design of experiment provided the mean and its confidence intervals for the predictive capability of different ML techniques, which reached AUROC values as high as 90% with suitable sensitivity and specificity. Among the learning algorithms, support vector machines and random forest performed best. The down-sampling method for unbalanced data improved the predictive power significantly for the images used in this study. Conclusions: Our investigation demonstrated that ML techniques are able to identify COVID-19 infected patients. The results provided suitable values of sensitivity and specificity, minimizing the false-positive or false-negative rates. The models were trained with significantly low computational resources, which helps to provide access and deployment in rural and impoverished areas.


Sign in / Sign up

Export Citation Format

Share Document