Effect of Doxycycline on Epithelial-Mesenchymal Transition via the p38/Smad Pathway in Respiratory Epithelial Cells

2017 ◽  
Vol 31 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Jae-Min Shin ◽  
Ju-Hyung Kang ◽  
Seoung-Ae Lee ◽  
Il-Ho Park ◽  
Heung-Man Lee

Purpose Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. Methods A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Results Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Conclusion Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Su Yeon Oh ◽  
Young-Hee Kang

Abstract Objectives Pulmonary fibrosis is a disease in which lung tissues become fibrous and causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract. These macrophages secrete various cytokines leading to development of pulmonary fibrosis. Aesculetin, a major component of Sancho tree and Chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on pulmonary fibrosis has been poorly understood. The current study investigated that aesculetin inhibited pulmonary fibrosis caused by infiltration of monocyte-derived macrophages. Methods To differentiate to monocyte-derived macrophages, THP-1 human mononuclear cell line was treated with 50 ng/ml phorbol myristate acetate (PMA) for 24 h. Culture conditioned media were harvested from macrophages cultured in the absence of PMA for 24 h. A549 human alveolar basal epithelial cells were cultured in the conditioned media for 24 h to induce alveolar fibrosis. Epithelial–mesenchymal transition (EMT)-associated fibrotic proteins were measured with Western blotting from A549 cell lysates. Results Aesculetin at the concentrations of 1–20 μM did not show any toxicity of A549 cells, evidence by MTT assay. When A549 cells were treated with conditioned media from monocyte-derived macrophages, the expression of mesenchymal fibrotic proteins of α-smooth muscle actin and fibronectin was highly enhanced. In contrast, ≥10 μM aesculetin inhibited the induction of these proteins of A549 cells. The expression of E-cadherin and Zonula occludens-1 was reduced in cells supplemented with conditioned media, while aesculetin promoted these epithelial phenotypic proteins in conditioned media-exposed alveolar cells. Conclusions These results demonstrate that aesculetin may ameliorate EMT-associated alveolar fibrosis caused by monocyte-derived macrophages infiltrated into the alveoli. Therefore, Aesculetin maybe a promising agent treating progressive pulmonary disorders owing to pulmonary inflammation. Funding Sources This work (Grants No. C0501612) was supported by project for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 20.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Catherine E. Winbanks ◽  
Ian A. Darby ◽  
Kristen J. Kelynack ◽  
Dodie Pouniotis ◽  
Gavin J. Becker ◽  
...  

Recognised by theirde novoexpression of alpha-smooth muscle actin (SMA), recruitment of myofibroblasts is key to the pathogenesis of fibrosis in chronic kidney disease. Increasingly, we realise that epithelial-mesenchymal transition (EMT) may be an important source of these cells. In this study we describe a novel model of renal EMT. Rat kidney explants were finely diced on gelatin-coated Petri dishes and cultured in serum-supplemented media. Morphology and immunocytochemistry were used to identify mesenchymal (vimentin+, α-smooth muscle actin (SMA)+, desmin+), epithelial (cytokeratin+), and endothelial (RECA+) cells at various time points. Cell outgrowths were all epithelial in origin (cytokeratin+) at day 3. By day 10, 50 ± 12% (mean ± SE) of cytokeratin+ cells double-labelled for SMA, indicating EMT. Lectin staining established a proximal tubule origin. By day 17, cultures consisted only of myofibroblasts (SMA+/cytokeratin−). Explanting is a reproducibleex vivomodel of EMT. The ability to modify this change in phenotype provides a useful tool to study the regulation and mechanisms of renal tubulointerstitial fibrosis.


2021 ◽  
Vol 22 (20) ◽  
pp. 11152
Author(s):  
Kai-Wei Chang ◽  
Xiang Zhang ◽  
Shih-Chao Lin ◽  
Yu-Chao Lin ◽  
Chia-Hsiang Li ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-β1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Heung-Man Lee ◽  
Ju-Hyung Kang ◽  
Jae-Min Shin ◽  
Seoung-Ae Lee ◽  
Il-Ho Park

Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.


2011 ◽  
Vol 300 (4) ◽  
pp. L548-L559 ◽  
Author(s):  
Stephen T. Buckley ◽  
Carlos Medina ◽  
Michael Kasper ◽  
Carsten Ehrhardt

Fibrosis of the lung is characterized by the accumulation of myofibroblasts, a key mediator in the fibrogenic reaction. Cumulative evidence indicates that epithelial-mesenchymal transition (EMT), a process whereby epithelial cells become mesenchyme-like, is an important contributing source for the myofibroblast population. Underlying this phenotypical change is a dramatic alteration in cellular structure. The receptor for advanced glycation end-products (RAGE) has been suggested to maintain lung homeostasis by mediating cell adhesion, while the family of ezrin/radixin/moesin (ERM) proteins, on the other hand, serve as an important cross-linker between the plasma membrane and cytoskeleton. In the present investigation, we tested the hypothesis that RAGE and ERM interact and play a key role in regulating EMT-associated structural changes in alveolar epithelial cells. Exposure of A549 cells to inflammatory cytokines resulted in phosphorylation and redistribution of ERM to the cell periphery and localization with EMT-related actin stress fibers. Simultaneously, blockade of Rho kinase (ROCK) signaling attenuated these cytokine-induced structural changes. Additionally, RAGE expression was diminished after cytokine stimulation, with release of its soluble isoform via a matrix metalloproteinase (MMP)-9-dependent mechanism. Immunofluorescence microscopy and coimmunoprecipitation revealed association between ERM and RAGE under basal conditions, which was disrupted when challenged with inflammatory cytokines, as ERM in its activated state complexed with membrane-linked CD44. Dual-fluorescence immunohistochemistry of patient idiopathic pulmonary fibrosis (IPF) tissues highlighted marked diminution of RAGE in fibrotic samples, together with enhanced levels of CD44 and double-positive cells for CD44 and phospho (p)ERM. These data suggest that dysregulation of the ERM-RAGE complex might be an important step in rearrangement of the actin cytoskeleton during proinflammatory cytokine-induced EMT of human alveolar epithelial cells.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Chuyi Zhang ◽  
Xiaoping Zhu ◽  
Yifei Hua ◽  
Qian Zhao ◽  
Kaijing Wang ◽  
...  

Abstract Pulmonary fibrosis is a chronic, progressive lung disease associated with lung damage and scarring. The pathological mechanism causing pulmonary fibrosis remains unknown. Emerging evidence suggests prominent roles of epithelial–mesenchymal transition (EMT) of alveolar epithelial cells (AECs) in myofibroblast formation and progressive pulmonary fibrosis. Our previous work has demonstrated the regulation of YY1 in idiopathic pulmonary fibrosis and pathogenesis of fibroid lung. However, the specific function of YY1 in AECs during the pathogenesis of pulmonary fibrosis is yet to be determined. Herein, we found the higher level of YY1 in primary fibroblasts than that in primary epithelial cells from the lung of mouse. A549 and BEAS-2B cells, serving as models for type II alveolar pulmonary epithelium in vitro, were used to determine the function of YY1 during EMT of AECs. TGF-β-induced activation of the pro-fibrotic program was applied to determine the role YY1 may play in pro-fibrogenesis of type II alveolar epithelial cells. Upregulation of YY1 was associated with EMT and pro-fibrotic phenotype induced by TGF-β treatment. Targeted knockdown of YY1 abrogated the EMT induction by TGF-β treatment. Enforced expression of YY1 can partly mimic the TGF-β-induced pro-fibrotic change in either A549 cell line or primary alveolar epithelial cells, indicating the induction of YY1 expression may mediate the TGF-β-induced EMT and pro-fibrosis. In addition, the translocation of NF-κB p65 from the cytoplasm to the nucleus was demonstrated in A549 cells after TGF-β treatment and/or YY1 overexpression, suggesting that NF-κB-YY1 signaling pathway regulates pulmonary fibrotic progression in lung epithelial cells. These findings will shed light on the better understanding of mechanisms regulating pro-fibrogenesis in AECs and pathogenesis of lung fibrosis.


2021 ◽  
Vol 14 ◽  
Author(s):  
Hanaa Wanas ◽  
Zeinab El Shereef ◽  
Laila Rashed ◽  
Basma Emad Aboulhoda

Background: Idiopathic pulmonary fibrosis (IPF) is a serious disease with high mortality rate. Activation of transforming growth factor (TGF)-β1 production and signalling is considered the corner stone in the epithelial-mesenchymal transition (EMT) process. EMT plays a central role in development of fibrosis in many organs including the lungs. Activated platelets is an important source of TGF-β1 and play a pivotal role in EMT and fibrosis process. The antiplatelet, ticagrelor was previously found to inhibit the EMT in different types of cancer cells, but its ability to serve as an anti-pulmonary fibrosis (PF) agent was not previously investigated. Objective: In this study, we aim to investigate the potential ability of ticagrelor to ameliorate bleomycin-induced fibrosis in rats. Methods: PF was induced in rats by intratracheal BLM at a dose of 3 mg/kg. The effect of daily daily 20 mg/kg oral ticagrelor on different histological and biochemical parameters of fibrosis was investigated. Results: Our results revealed that ticagrelor can alleviate lung fibrosis. We found that ticagrelor inhibited TGF-β1 production and suppressed Smad3 activation and signaling pathway with subsequent inhibition of Slug and Snail. In addition, ticagrelor antagonized PI3K/AKT/mTOR pathway signaling. Moreover, ticagrelor inhibited the EMT that revealed by its ability to up-regulate the epithelial markers as E-cadherin (E-cad) and to decrease the expression of the mesenchymal markers as vimentin (VIM) and alpha-smooth muscle actin (α-SMA). Conclusion: Our results suggest that the P2Y12 inhibitor, ticagrelor may have a therapeutic potential in reducing the progression of PF.


2007 ◽  
Vol 293 (3) ◽  
pp. F723-F731 ◽  
Author(s):  
Aihua Zhang ◽  
Zhanjun Jia ◽  
Xiaohua Guo ◽  
Tianxin Yang

It has been well appreciated that aldosterone (Aldo) plays a direct profibrotic role in the kidney but the underlying mechanism is unclear. We examined the role of Aldo in epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Exposure of human renal proximal tubular cells to Aldo for 48 h dose dependently induced EMT as evidenced by conversion to the spindle-like morphology, loss of E-cadherin, and de novo expression of α-smooth muscle actin (SMA); the effect was noticeable at 50 nM and maximal at 100 nM. The EMT was completely blocked by the selective mineralocorticoid receptor (MR) antagonist eplerenone. Aldo time dependently increased intracellular reactive oxygen species (ROS) production that was detectable at 15 min and peaked (2.3-fold) at 60 min, as assessed by 2′,7′-dichlorofluorescin diacetate fluorescence. Aldo-induced oxidative stress and EMT were both abolished by the mitochondrial respiratory chain complex I inhibitor rotenone, but not the NADPH oxidase inhibitor apocynin. Aldo induced phosphorylation of ERK1/2 that was completely blocked by rotenone. Male 129-C57/BL6 mice were treated with deoxycorticosterone acetate (DOCA) salt (subcutaneous implantation of 50 mg of DOCA pellet plus 1% NaCl as drinking fluid) for 3 wk and animals were treated with vehicle or rotenone (600 ppm in diet) for the last week. DOCA salt induced a 2.5-fold increase in α-SMA and a 30% reduction of E-cadherin, as assessed by real-time RT-PCR, that were both restricted to renal epithelial cells, as determined by immunohistochemistry. In contrast, DOCA salt-induced changes in α-SMA and E-cadherin were completely blocked by treatment with rotenone. These observations suggest that Aldo induces EMT via MR-mediated, mitochondrial-originated, ROS-dependent ERK1/2 activation in renal tubular epithelial cells.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenzhen Ma ◽  
Chunyan Ma ◽  
Qingfeng Zhang ◽  
Yang Bai ◽  
Kun Mu ◽  
...  

AbstractAlveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial–mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-β1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-β1/Smad3 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document