scholarly journals Sinonasal T-Cell Expression of Cytotoxic Mediators Granzyme B and Perforin is Reduced in Patients with Chronic Rhinosinusitis

2017 ◽  
Vol 31 (6) ◽  
pp. 352-356 ◽  
Author(s):  
Sarah E. Smith ◽  
Rodney J. Schlosser ◽  
James R. Yawn ◽  
Jose L. Mattos ◽  
Zachary M. Soler ◽  
...  

Background CD8+ T cells and natural killer (NK) cells are cytotoxic cells that use granzyme B (GrB) and perforin. Defective cytotoxic function is known to play a role in dysregulated immune response as seen in chronic sinusitis, also referred to as chronic rhinosinusitis (CRS). However, to our knowledge, in the United States, neither GrB or perforin expression has been reported in patients with CRS. Objective The aim of this study was to investigate sinonasal cytotoxic cells, their mediators, and cell-specific distribution of these mediators in patients with CRS with nasal polyp (CRSwNP) and in patients with CRS without nasal polyp (CRSsNP). Methods Blood and sinus tissue samples were taken from patients with CRSsNP (n = 8) and CRSwNP (n = 8) at the time of surgery. Control subjects (n = 8) underwent surgery for cerebrospinal fluid leak repair or to remove non-hormone-secreting pituitary tumors. The cells were analyzed via flow cytometry by using CD8 expression to identify cytotoxic T cells and CD56 expression to identify NK cells. Intracellular GrB and perforin expression were analyzed with flow cytometry. Results We observed no significant differences in plasma or peripheral blood immune cell numbers or specific levels of GrB or perforin among the groups. In the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP, there was a significant decrease in GrB and perforin levels (p <0.05) despite similar or increased numbers of cytotoxic cells when compared with the controls. The overall decrease in GrB and perforin in the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP was due to decreased T cell production. There was no difference in total NK cell count or expression of perforin or GrB among all the groups. Conclusion Total levels of sinonasal GrB and perforin were decreased in the sinonasal mucosa of both the patients with CRSwNP and the patients with CRSsNP compared with the controls, whereas sinonasal CD8+ T cells, (but not NK cells,), intracellular stores of GrB and perforin were reduced in the patients with CRSwNP compared with the controls.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4521-4521 ◽  
Author(s):  
Homer Adams ◽  
Frederik Stevenaert ◽  
Jakub Krejcik ◽  
Koen Van der Borght ◽  
Tineke Casneuf ◽  
...  

Abstract Introduction: Daratumumab (DARA) is a human CD38-targeting monoclonal antibody that induces deep clinical responses in MM pts through multifaceted mechanisms of action (MOA) including complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis and induction of apoptosis. Flow cytometry analysis revealed a previously unknown immunomodulatory role of DARA, via T-cell induction expansion, T-cell activity enhancement, and reduction of immune suppressive cell populations including CD38+ myeloid-derived suppressor cells, CD38+ regulatory T cells (TRegs), and CD38+ regulatory B cells (BRegs). Next-generation mass cytometry (CyTOF), which allows high parameter evaluation of the immune system, was used to assess the effects of DARA alone or in combination on a more comprehensive profile of immune cell subpopulations. Methods: Relapsed/refractory MM pt samples from a subset of single agent studies; SIRIUS (32 pts; whole blood [WB] only; Lonial S et al. The Lancet, 2016) and GEN501 (5 pts; WB and bone marrow [BM], Lokhorst HM et al. NEJM, 2015) along with GEN503, a study of DARA plus lenalidomide and dexamethasone (9 pts; WB and BM; Plesner T et al. ASH 2015) were analyzed. Fluorochrome or metal-conjugated antibody panel stained samples were evaluated by flow cytometry or cytometry by time-of-flight (CyTOF®) platforms, respectively. FACS analyses were performed and analyzed by FACS Canto II flow cytometers and FACSDiva software. For CyTOF analysis, events were clustered by phenotype by a spanning tree progression of density normalized events (SPADE) algorithm, and each cluster was associated with an immune population via Cytobank® software. Differential analysis of population fractions and marker intensity, over time and between response groups, derived raw P values from t-tests and single cell level bootstrap adjusted P values corrected for multiple dependent hypothesis testing. Results were visualized using SPADE trees (Figure) and Radviz projections, a new method that allows for the comparison of populations and conditions while preserving the relation to original dimensions. Results: Flow cytometry and high-dimensional CyTOF analyses confirmed previous findings including higher CD38 expression on plasma cells compared with other immune populations of natural killer (NK), monocytes, B and T cells, and depletion of both plasma cells and NK cells upon DARA treatment. Interestingly, while NK cells were significantly reduced with DARA treatment, remaining active NK cells (CD16+CD56dim) demonstrated increased expression of activation markers CD69, CD25 and CD137 while also decreasing granzyme B and increasing naive marker CD27. Though functionality tests weren't performed, the ability to evaluate several markers simultaneously suggests these cells possess limited cytotoxicity. Additionally, these studies indicated depletion of CD38 positive immune suppressive subsets of Tregs and Bregs. CD38+ basophil reductions occurred independent of response and may provide insight to short-lived infusion related reactions. Several observations within the T-cell compartment were indicative of a DARA-mediated adaptive response in both WB and BM samples. T cells displayed increases in total numbers and shifted towards higher CD8:CD4 and effector:naïve ratios after 2 months of DARA treatment. Responders had higher expression levels of several activation markers including CD69 and HLA-DR along with increased production of cytolytic enzyme granzyme B in CD8+ T cells following DARA treatment. Interestingly, in the GEN503 sample set, pts who achieved a complete response presented with a distinct BM CD4 T-cell phenotype of high granzyme B positivity versus those that achieved a partial response or very good partial response. This observation suggests pts with an active immune phenotype may achieve deeper responses to DARA in combination with standard of care agents lenalidomide and dexamethasone. Conclusion: CyTOF analysis of pt samples from both single agent and combination DARA studies agree with flow cytometry and support the pharmacodynamics and immune modulatory MOA of DARA while providing additional insight into changes in T-cell subtypes and activation status. Future CyTOF analyses of clinical samples from phase 3 combination studies aim to confirm these observations and expand the understanding of the MOA of DARA. Disclosures Adams: Janssen Research & Development, LLC: Employment. Stevenaert:Janssen: Employment. Van der Borght:Janssen: Employment. Casneuf:Janssen R&D, Beerse, Belgium: Employment; Johnson & Johnson: Equity Ownership. Smets:Janssen: Employment. Bald:Janssen: Employment. Abraham:Janssen: Employment. Ceulemans:Janssen: Employment. Vanhoof:Janssen: Employment; Johnson & Johnson: Equity Ownership. Ahmadi:Janssen: Employment. Usmani:Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Array: Research Funding; BioPharma: Research Funding; Pharmacyclics: Research Funding; Takeda: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Millenium: Membership on an entity's Board of Directors or advisory committees; Skyline: Membership on an entity's Board of Directors or advisory committees. Plesner:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lonial:Janssen: Consultancy; BMS: Consultancy; Merck: Consultancy; Novartis: Consultancy; Janssen: Consultancy; Onyx: Consultancy; Onyx: Consultancy; Millenium: Consultancy; Celgene: Consultancy; Novartis: Consultancy; BMS: Consultancy; Celgene: Consultancy. Lokhorst:Genmab: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Mutis:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genmab: Research Funding; Celgene: Research Funding. van de Donk:Janssen: Research Funding; BMS: Research Funding; Amgen: Research Funding; Celgene: Research Funding. Sasser:Janssen Pharmaceuticals R&D: Employment; Johnson & Johnson: Equity Ownership.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3244-3244
Author(s):  
Gabriele Multhoff ◽  
Catharina Gross ◽  
Anne Dickinson ◽  
Ernst Holler

Abstract Purpose: Hsp70 was frequently found on the plasma membrane of bone marrow-derived leukemic blasts, but not on normal bone marrow cells. Hsp70 membrane expression could be correlated with protection against therapy-induced apoptosis (Nylandsted et al 2004). In contrast, these tumor cells have been found to be highly sensitive to the cytolytic attack mediated by NK cells. In vitro, Hsp70-activated NK cells efficiently lysed autologous Hsp70 membrane-positive leukemic blasts (Gehrmann et al 2003). Granzyme B release served as a surrogate marker for estimating the cytolytic response of NK cells against Hsp70 membrane-positive tumor target cells (Gross et al 2003). Here, we studied the development of NK and T cells in AML patients (n=6) after allogeneic SCT at different time points (days 14–20, 45, 90, 180, 1 year) after allogeneic stem cell transplantation (SCT). Methods: HLA class I, HLA-E and Hsp70 surface expression was determined on all patient-derived leukemic blasts of the bone marrow by flow cytometry. The amount of NK and T cells was investigated by multicolor flow cytometry using CD3/ CD16 and CD56 and CD94/ CD56 antibody-combinations detecting NK cell specific markers. Effector cell function was tested in a granzyme B ELISPOT assay against patient-derived leukemic blasts and K562 cells. Results: All tested leukemic blasts were positive for HLA class I, HLA-E, and Hsp70. After induction therapy the amount of CD3-negative, CD56/CD94-positive NK cells was 28±16%, that of CD3-positive T cells was 58±3%. On days 14–21 after allogeneic SCT, 58±9% of the donor-derived peripheral blood lymphocytes (PBL) were CD3-negative, CD56/CD94-positive NK cells; the amount of CD3-positive T cells was 26±7.5%. On day 45, the amount of NK cells further increased up to 68±7.9%; that of T cells further decreased down to 16±5.6%. On day 90 and day 180 the amount of NK cells was still 41±10%; that of T cells was 29±12%. Interestingly, high NK cell counts correlated with an increased cytolytic response against leukemic blast and K562 cells. One year after allogeneic SCT, NK (20±1%) and T cell (52±18%) ratios were comparable to that of healthy human individuals. Conclusions: Between days 14 and 180 after allogeneic SCT, the amount of NK cells was significantly elevated if compared to that of T cells. Concomitantly, cytolytic function against leukemic blasts was significantly elevated. Normal levels, in the composition of NK and T cells were reached 1 year after SCT. Project funded by EU-TRANS-EUROPE grant QLK3-CT-2002-01936.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Kazuhiro Kogawa ◽  
Susan M. Lee ◽  
Joyce Villanueva ◽  
Daniel Marmer ◽  
Janos Sumegi ◽  
...  

Mutations in the perforin gene have been described in some patients with hemophagocytic lymphohistiocytosis (HLH), but the role of perforin defects in the pathogenesis of HLH remains unclear. Four-color flow cytometric analysis was used to establish normal patterns of perforin expression for control subjects of all ages, and patterns of perforin staining in cytotoxic lymphocytes (natural killer [NK] cells, CD8+ T cells, CD56+ T cells) from patients with HLH and their family members were studied. Eleven unrelated HLH patients and 19 family members were analyzed prospectively. Four of the 7 patients with primary HLH showed lack of intracellular perforin in all cytotoxic cell types. All 4 patients showed mutations in the perforin gene. Their parents, obligate carriers of perforin mutations, had abnormal perforin-staining patterns. Analysis of cytotoxic cells from the other 3 patients with primary HLH and remaining family members had normal percentages of perforin-positive cytotoxic cells. On the other hand, the 4 patients with Epstein-Barr virus–associated HLH typically had depressed numbers of NK cells but markedly increased proportions of CD8+ T cells with perforin expression. Four-color flow cytometry provides diagnostic information that, in conjunction with evidence of reduced NK function, may speed the identification of life-threatening HLH in some families and direct further genetic studies of the syndrome.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3421-3421
Author(s):  
Spencer Ng ◽  
Jiusheng Deng ◽  
Raghavan Chinndurai ◽  
Shala Yuan ◽  
Andrea Pennati ◽  
...  

Abstract The use of cytokines as agents to augment immune responses against malignancies have been dealt setbacks due to immune selection of tumors, resulting in subpopulations that elaborate tumor-derived soluble factors, such as transforming growth factor-beta (TGF-β), which suppress immune effector functions. TGF-β is overexpressed by many solid and hematological malignancies and is well known to inhibit the proliferation and anti-tumor functions of lymphomyeloid cells. In order to maximize cytokine-based immunotherapy against tumors, we have designed a novel fusion protein consisting of proinflammatory murine interleukin-15 (IL-15) linked to the sushi domain of the IL-15Rα chain (IL15Rαsushi +IL15) fused in frame to the C'-terminus of a dimeric murine TGF-β-receptor (type II, TβRII) ectodomain-based ligand trap, termed FIST-15 (Fusion of Interleukin 15 with Sushi to TGF-β receptor). The rationale for the design of this protein is to prevent tumor-derived TGF-β from suppressing the immune response via the TGF-β ligand trap moiety, while simultaneously providing a potent stimulus for the activation of anti-tumor responses by an IL-15R agonist (IL-15Rαsushi +IL15). FIST-15 can neutralize TGF-β induced Smad signaling, and induce STAT3 and STAT5 phosphorylation by immunoblot and intracellular flow cytometric analysis of lymphocytes, suggesting that both protein domains are biochemically active. Functionally, FIST-15 is able to induce CD8+ T-cell proliferation at rates greater than IL-15 alone (CD8+ T-cell replicative index or fold-expansion of responding cells: 40, FIST-15, vs. 10, IL-15; p-value of unpaired T-test <0.05). The mitogenic effects of IL-15 are abrogated in CD8+ T-cells and NK cells in the presence of TGF-β. However, FIST-15 can overcome TGF-β mediated inhibition in both these cellular subsets (CD8+ T-cell replicative index: 20, FIST-15, vs. 5, IL-15, and NK cell replicative index: 40, FIST-15 vs. 5, IL-15; p-value <0.05). Rapid proliferation of the CD8+ central memory phenotype (CD62L+, CD44+) T-cells are seen with FIST-15 treatment. Compared to IL-15 expanded CD8+ T-cells, FIST-15 treatment also produced more IFN-γ, TNF-α, and IL-2 secreting CD8+ T-cells upon PMA/ionomycin stimulation. In addition to cytokines, production of anti-tumor effector molecules such as granzyme B is known to be inhibited by TGF-β. FIST-15 treated NK cells were superior to IL-15 treated NK cells in granzyme B production, even in the presence of TGF-β, as assayed by flow cytometric analysis (86.8% vs. 30.7% granzyme B expressing cells). Functionally, FIST-15 treated NK cells were also significantly more cytolytic against TGF-β secreting B16 murine melanoma cells in vitro compared to IL-15 treated NK cells (83.5% killing, FIST-15, vs. 24.4% killing, IL-15). C57Bl/6 mice with pre-established, syngeneic B16 melanoma tumors were treated with FIST-15 to assay the anti-tumor effects of the fusion protein in vivo. Mice receiving FIST-15 showed a significant delay in tumor growth (mean tumor volume: 345mm3) compared to control mice receiving conditioned media (mean tumor volume: 814.12mm3; p-value of paired T-test = 0.02) by day 21 post-tumor implantation. Furthermore, FIST-15 treated mice showed a significant survival advantage compared to control treated mice (80% vs 0%; p-value of log rank test = 0.0019) by day 27 post-tumor implantation. Mice immunized with B16 tumors transduced to express FIST-15 were also protected against subsequent wildtype B16 tumor challenge, suggesting that FIST-15 can trigger an adaptive immune response against tumor. Ongoing work utilizing FIST-15 in murine models of hematological malignancies, such as EL-4 lymphoma and C1498 AML, is currently underway. These models were selected due to their known overexpression of TGF-β isoforms that systemically inhibit endogenous anti-tumor responses, as well as the efficacy of immunotherapeutic agents. Indeed, many hematological malignancies acquire mutations that render them insensitive to the growth-inhibitory effects of TGF-β, where it may then be overexpressed as an oncogene to promote further tumor growth by inhibiting the immune system's anti-tumor capabilities (Dong et al Blood 2006). FIST-15 may present a viable immunotherapeutic strategy for hematological malignancies by combining the immune activating effects of IL-15 with the neutralization of immunosuppressive TGF-β. Disclosures Ng: Emory University: Patents & Royalties. Galipeau:Emory University: Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2952-2952
Author(s):  
Takahiro Miyazaki ◽  
Peiwen Kuo ◽  
Mekhala Maiti ◽  
Palakshi Obalapur ◽  
Murali Addepalli ◽  
...  

Abstract Introduction IL-15 is a common gamma chain cytokine that activates and provides a survival benefit to T-cells and NK cells and has long been recognized as having potential as an immunotherapeutic agent for the treatment of cancer. Therapeutic use of native IL-15 has been challenging due to, for example, its unfavorable pharmacokinetic and safety properties. NKTR-255 is a polymer-conjugated human IL-15 that retains binding affinity to the alpha subunit of IL-15 receptor and exhibits reduced clearance to thereby provide a sustained pharmacodynamics response. Here we investigate the biological effects of NKTR-255 in naïve cynomolgus monkey. Methods In vitro monkey whole blood was treated with NKTR255 and the percentage of pSTAT5 positive populations in each NK, CD4 T and CD8 T cells was determined by flow cytometry. In an PK/PD study, monkeys received single IV doses of 0.001, 0.003, 0.01, 0.03, or 0.1 mg/kg NKTR-255. Blood samples were collected to determine the plasma concentrations of NKTR-255 and to assess the effects of NKTR-255 on NK and CD8 T cells at multiple time points; flow cytometry was used to measure STAT5 phosphorylation, Ki-67 expression and frequency of cell populations. Granzyme B expression was assessed in NK and CD8 T cells by flow cytometry. Results NKTR-255 induced dose-dependent phosphorylation of STAT5 in monkey whole blood (EC50 values NK cells: 6.9 ng/ml, CD8 T cells: 39 ng/ml, CD4 T cells: 53 ng/ml). The half-life and clearance of NKTR-255 were 26x longer and 38x lower, respectively, than IL-15. NKTR-255 engaged the IL-15 signaling pathway, in vivo, demonstrating both robust and sustained STAT5 phosphorylation in lymphocytes. NKTR-255 drove the proliferation of total CD8 T cells and NK cells in a dose-dependent manner, with dramatic and durable increases observed in Ki67 positive population and absolute cell numbers (NK cells: 6.1 fold; CD8 T cells: 7.8 fold from baseline on day 5 at 0.1 mg/kg). These effects were strongly biased towards CD8 T cells and NK cells, with substantially less induction of CD4 T cells. The Ki67 response analyses of the T cell subpopulation revealed a higher response of memory populations than for naive T cells. Among memory T cells, effector memory T cells showed the highest response over stem cell memory T cells and central memory T cells. Finally, NKTR-255 also increased the expression of Granzyme B in both NK and CD8 T cells, concomitant with an enhancement in target cell lysis. Conclusions Nektar has generated a novel and potent molecule in NKTR-255 that not only preserves the relevant biology of IL-15, but additionally provides enhanced PK and PD properties relative to the native IL-15 cytokine. NKTR-255 is being developed as an immune-stimulatory agent to target NK and CD8 T cell biology for the treatment of cancer. Disclosures Miyazaki: Nektar Therapeutics: Employment, Equity Ownership. Kuo:Nektar Therapeutics: Employment, Equity Ownership. Maiti:Nektar Therapeutics: Employment, Equity Ownership. Obalapur:Nektar Therapeutics: Employment, Equity Ownership. Addepalli:Nektar Therapeutics: Employment, Equity Ownership. Rubas:Nektar Therapeutics: Employment, Equity Ownership. Sims:Nektar Therapeutics: Employment, Equity Ownership. Zhang:Nektar Therapeutics: Employment, Equity Ownership. Madakamutil:Nektar Therapeutics: Employment, Equity Ownership. Zalevsky:Nektar Therapeutics: Employment, Equity Ownership.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2102-2102 ◽  
Author(s):  
Mahesh Yadav ◽  
Cherie Green ◽  
Connie Ma ◽  
Alberto Robert ◽  
Andrew Glibicky ◽  
...  

Abstract Introduction:TIGIT (T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif [ITIM] domain) is an inhibitory immunoreceptor expressed by T and natural killer (NK) cells that is an important regulator of anti-tumor and anti-viral immunity. TIGIT shares its high-affinity ligand PVR (CD155) with the activating receptor CD226 (DNAM-1). We have recently shown that TIGIT blockade, together with PD-L1/PD-1 blockade, provides robust efficacy in syngeneic tumor and chronic viral infection models. Importantly, CD226 blockade abrogates the benefit of TIGIT blockade, suggesting additional benefit of TIGIT blockade through elaboration of CD226-mediated anti-tumor immunity, analogous to CTLA-4/CD28 regulation of T-cell immunity. Whether TIGIT and CD226 are expressed in patients with multiple myeloma (MM) and how TIGIT expression relates to PD-L1/PD-1 expression is unknown. Here we evaluate expression of TIGIT, CD226, PD-1 and PD-L1 in patients with MM to inform novel immunotherapy combinations. Methods:We performed multi-color flow cytometry (n = 25 patients), and multiplex qRT-PCR (n = 7) on bone marrow specimens from patients with MM to assess expression of TIGIT, CD226, PD-1, and PD-L1 on tumor and immune cells. Cells were stained with fluorescently conjugated monoclonal antibodies to label T cells (CD3, CD4, CD8), NK cells (CD56, CD3), plasma cells (CD38, CD45, CD319, CD56), inhibitory/activating receptors (PD-1, TIGIT, PD-L1, CD226), and an amine-reactive viability dye (7-AAD). Stained and fixed cells were analyzed by flow cytometry using BD FACSCanto™ and BD LSRFortessa™. Results:TIGIT, CD226 and PD-L1/PD-1 were detectable by flow cytometry in all patients with MM who were tested, with some overlapping and distinct expression patterns. TIGIT was commonly expressed by marrow-infiltrating CD8+ T cells (median, 65% of cells), CD4+ T cells (median, 12%) and NK cells. In contrast, CD226 was more commonly expressed by marrow-infiltrating CD4+ T cells (median, 74%) compared with CD8+ T cells (median, 38%). PD-1 was expressed by marrow-infiltrating CD8+ T cells (median 38%) and CD4+ T cells (median, 16%). TIGIT was co-expressed with PD-1 on CD8+ T cells (67%-97% TIGIT+ among PD-1+), although many PD-1-negative CD8+ T cells also expressed TIGIT (39%-78% of PD-1-negative). PD-L1 was also expressed by CD8+ (median, 23%) and CD4+ (median, 8%) T cells in addition to MM plasma cells (median, 95%), albeit with significantly lower intensity on T cells compared with plasma cells. The expression of TIGIT and PD-L1 mRNA was highly correlated (R2 = 0.80). Analysis of PVR expression will also be presented. Conclusions: TIGIT, CD226, PD-1, and PD-L1 were commonly expressed in MM bone marrow, but with different patterns. Among CD8+ T cells, the frequency of TIGIT+ T cells was almost twice that of PD-1+ T cells, whereas the majority of CD4+ T cells expressed CD226. TIGIT blockade may complement anti-PD-L1/PD-1 immunotherapy by activating distinct T-cell/NK-cell subsets with synergistic clinical benefit. These results provide new insight into the immune microenvironment of MM and rationale for targeting both the PD-L1/PD-1 interaction and TIGIT in MM. Disclosures Yadav: Genentech, Inc.: Employment. Green:Genentech, Inc.: Employment. Ma:Genentech, Inc.: Employment. Robert:Genentech, Inc.: Employment. Glibicky:Makro Technologies Inc.: Employment; Genentech, Inc.: Consultancy. Nakamura:Genentech, Inc.: Employment. Sumiyoshi:Genentech, Inc.: Employment. Meng:Genentech, Inc.: Employment, Equity Ownership. Chu:Genentech Inc.: Employment. Wu:Genentech: Employment. Byon:Genentech, Inc.: Employment. Woodard:Genentech, Inc.: Employment. Adamkewicz:Genentech, Inc.: Employment. Grogan:Genentech, Inc.: Employment. Venstrom:Roche-Genentech: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3875-3875 ◽  
Author(s):  
Marion E Cole ◽  
Alexander MacFarlane ◽  
Mowafaq Jillab ◽  
Mitchell R Smith ◽  
Adam D Cohen ◽  
...  

Abstract Abstract 3875 Introduction: Immunologic environment influences progression of lymphoid malignancies. Specifically, shifts in subsets of natural killer (NK) and T cells as well as tumor expression of inhibitory ligands may contribute to ability to evade host detection. Immune dysfunction may be particularly important in CLL/SLL, as prevalent circulating tumor cells engage in persistent, widespread interactions with immune cells; commonly-used mAb therapies (e.g. rituximab, alemtuzumab) rely upon ADCC mediated by NK cells and other innate effectors; and disease course is highly variable and not fully accounted for by tumor-intrinsic prognostic factors. Therefore, to better characterize the immune system in CLL/SLL, we prospectively assessed NK and T cell frequency, phenotype, and function in a series of CLL/SLL patients. Methods: Serial blood samples (up to 3 samples each, 3–6 months apart) were collected from 31 untreated CLL/SLL patients (median age 66) and 15 healthy age-matched controls (HC), and peripheral blood lymphocytes (PBL) analyzed directly ex vivo by multiparameter flow cytometry (160 distinct parameters evaluated, primarily on T and NK cells). NK cell-mediated natural and antibody-dependent cytotoxicity were also assessed by CD107a degranulation assay following PBL co-culture with rituximab, 721.221 EBV-transformed lymphoma cells, or both. Differences in parameters between patients and controls, or between progressors and non-progressors [categorized based on updated NCI-WG criteria (Blood 2008;111:5446)] were analyzed by Wilcoxon rank-sum test. All subjects signed IRB approved informed consent forms. Results: CLL/SLL VS. HC: CLL/SLL samples displayed a marked decrease in the ability of the cytolytic CD56dim NK cells to degranulate in response to tumor, both with or without rituximab (Table 1). CD56dim NK cells from CLL/SLL patients also displayed a more immature phenotype (↓CD57, ↓NKG2D, ↑CD27, ↓KIR) than those from HC, suggesting either a block in differentiation or elimination of the most-differentiated cells. NK cell expression of NKp44, CD69, CD62L, CD137, granzyme B, perforin, or PD-1, as well as tumor-induced NK cell production of IFNγ, did not differ. CLL/SLL patients had increased total T cells with a decreased CD4:CD8 ratio, associated with increased total number of CD8 T cells, greater activation of naive CD4 T cells and transition to a memory phenotype. Treg (CD4+CD25+FoxP3+) frequency was significantly higher in CLL/SLL patients (4.5% vs. 1.8% of CD4 T cells, p=0.005), as was PD-1 expression on both CD4 and CD8 T cells, while CD137 and ICOS expression was similar in both groups. PROGRESSORS VS. NON-PROGRESSORS: With median follow-up of 16.5 months (range 1–37), 7 of 31 patients have met criteria for progression. Compared to non-progressors, progressors showed changes in the CD56bright NK cell compartment suggestive of increased activation and accelerated differentiation, with increased expression of CD69, granzyme B, perforin, CD16, and KIR. However, no significant functional differences in NK cells, or consistent differences in T cell subsets, have been observed to date. Conclusions: CLL/SLL patients have a shift toward less mature NK cells, associated with deficits in NK cell degranulation against tumor targets, compared with healthy donors. Those CLL/SLL patients who progressed had greater CD56 bright NK cell phenotypic aberrancies than non-progressors, though these findings require confirmation with a larger cohort. Taken together, our findings support the hypothesis that immune dysfunction in CLL/SLL may be due in part to a block in NK cell differentiation or loss of more mature cells, and current studies are exploring these possibilities and potential mechanisms. Given these findings, along with the immunosuppressive changes observed in the T cell compartment (↑Tregs, ↑PD-1), these data support therapeutic strategies in CLL/SLL aimed at augmenting NK and/or T cell function. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Di Zhao ◽  
Xiao Yang ◽  
Jie Zhang ◽  
Yi Zhang

T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been found to play important roles in systemic lupus erythematosus (SLE), however, whether Tim-3 is involved in apoptosis of NK cells in SLE remains unknown. The proportion of CD3−CD56+ NK cells and the percentage of AnnexinV+ NK cells were analyzed by flow cytometry in SLE patients and healthy controls. Tim-3 expression on NK cells was also evaluated by flow cytometry. We firstly observed a decreased proportion of NK cells and an increased proportion of apoptotic NK cells in SLE patients. The proportion of apoptotic NK cells was positively correlated with anti-dsDNA and SLEDAI. Tim-3 expression on NK cells was up-regulated in SLE patients. Further analysis showed that Tim-3 expression on NK cells was negatively correlated with the proportion of apoptotic NK cells, anti-dsDNA and SLEDAI, while positively correlated with the proportion of NK cells. The present results suggest that Tim-3 might play roles in SLE by regulating the apoptosis of NK cells and Tim-3 might serve as a potential target for the treatment of SLE.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A623-A623
Author(s):  
Yannick Rakké ◽  
Lucia Campos Carrascosa ◽  
Adriaan van Beek ◽  
Valeska de Ruiter ◽  
Michael Doukas ◽  
...  

BackgroundImmune checkpoint blockade (ICB; e.g. anti-PD-1/-CTLA-4) has been proven to be clinically effective in mismatch repair deficient (dMMR) colorectal carcinoma (CRC). Yet, the majority of patients carry mismatch repair proficient (pMMR) CRC, especially those with liver metastasis, and do not respond to ICB. Here, we studied the effect of immune checkpoint stimulation via GITR targeting on human tumour-infiltrating lymphocyte (TIL) functionality in pMMR primary CRC and liver metastases (CRLM).MethodsHuman TIL were isolated from freshly resected pMMR tumours of patients with primary CRC (stage 1–3) or liver metastases (table 1). GITR expression on TIL was determined using flow cytometry and compared to leukocytes isolated from blood (PBMC) and tumour-free surrounding tissues (tumour-free colon/liver, resp. TFC and TFL). Ex vivo functional assays were used to assess TIL expansion, activation and cytokine/cytotoxic mediator secretion upon CD3/CD28 bead activation and co-stimulation using an antibody-crosslinked recombinant trimeric GITR ligand (GITRL).ResultsGITR was overexpressed on TIL when compared to other stimulatory immune checkpoints (4-1BB, OX40). GITR expression was enhanced on CD4+ and CD8+ TIL compared to PBMC and TFC or TFL compartments in both primary CRC and CRLM. Among CD4+ TIL, GITR was increasingly expressed on CD45RA± FoxP3- helper T (Th), CD45RA- FoxP3int activated helper T (aTh), and CD45RA- FoxP3hi activated regulatory T cells (aTreg), respectively. Within CD8+ TIL, GITR expression was higher on TOX+ PD1Hi and putatively tumour-reactive CD103+ CD39+ TIL.1 Impaired effector cytokine production upon ex vivo PMA/ionomycin stimulation was observed in CD4+ and CD8+ GITR-expressing TIL, hinting to functional exhaustion of the target population. However, recombinant GITRL reinvigorated ex vivo TIL responses by significantly enhancing CD4+ and CD8+ TIL numbers and proinflammatory cytokine secretion in a dose-dependent manner (figure 1). Treg depletion did not fully abrogate the stimulatory effect of GITR ligation on CD4+ and CD8+ T cell expansion, demonstrating that the stimulatory effect was partly exerted via direct targeting GITR on effector T cells. Importantly, GITR-ligation also enhanced expansion of purified CD8+CD39+ TIL. Dual treatment with GITR ligand and nivolumab (anti-PD-1) further enhanced CD8+ TIL responses compared to GITR ligand monotherapy, whereas nivolumab alone did not show any effect.Abstract 588 Table 1Patient characteristicsPatient characteristics of patients included for FACS analysis and/or functional assays. † Pathologic staging was performed according to the AJCC 8th edition criteriaAbstract 588 Figure 1GITR ligation enhances CD4+ and CD8+ TIL expansionTIL were isolated from CRC or CRLM and cultured upon CD3/CD28 activation with or without GITRL (0.1–1.0 ug/mL) for 8 days. TIL numbers were acquired by flow cytometry and normalized to counting beads. Indicated is fold change relative to ctrl-treated TIL (n=10).ConclusionsAgonistic targeting of GITR enhances ex vivo human TIL functionality in pMMR CRC and might therefore be a promising approach for novel mono- or combinatorial immunotherapies in primary CRC and CRLM.AcknowledgementsN/ATrial RegistrationN/AEthics ApprovalThe study was approved by the medical ethics committee of the Erasmus Medical Center (MEC-2012-331).ConsentN/AReferenceDuhen T, Duhen R, Montler R, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018;9(1):2724. doi: 10.1038/s41467-018-05072-0.


Sign in / Sign up

Export Citation Format

Share Document