scholarly journals Multiparticulate Drug Delivery System for Gastrointestinal Tuberculosis

Author(s):  
Monica RP Rao ◽  
Mayuri K. Magar

Drug solubility poses numerous challenges in design of formulations for drugs with poor aqueous solubility. Ethionamide is an antitubercular drug belonging to biopharmaceutical classification system class II drug having less aqueous solubility. Nanosuspensions were prepared by using various solvents such as methanol, ethanol, acetone and chloroform and it was prepared using anti-solvent precipitation technique by using probe sonication. Various stabilizers such as tocopherolpolythytlene glycol succinate, polyvinylpyrrolidone and tween 80 singly or in combination were studied. A 32 factorial design was employed to study the effect of independent variables, concentration of stabilizers and stirring speed on particle size and cumulative percent drug release. The particle size of the optimized batch was 97.54 ± 8.47 nm with polydispersity index of 0.36 and zeta potential -10.1 ± 2.3 mV. The cumulative percent drug release of optimized batch was found to be 95.01 ± 1.16% in 60 min. Optimized batch was ultracentrifuged and evaluated for saturation solubility studies, stability and powder X-ray Diffraction studies. Optimized nanosuspension was loaded on Espheres by spraying in a coating pan and then coating of Eudragit controlled release polymers. The coated Espheres were evaluated for drug content, friability, scanning electron microscopy, ex-vivo permeation studies and drug release kinetics studies. The friability value for primary coated sphere was found to be 0.8 ± 0.12% and for secondary was 1% and the best fit model was found to be Korsmeyer-Peppas model which is indicative of diffusion controlled release. Ex vivo diffusion studies revealed a moderate increase in permeability.

Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2019 ◽  
Author(s):  
Chem Int

This work focus on the study and the elaboration of microspheres based on amoxicillin (AMO), those microspheres were prepared through the oil/water emulsion evaporation technique. Polybutylene succinate (PBS) and Poly(methylmethacrylate) (PMMA) polymeric matrix were used with Tween 80 (T80) and Polyvinyl alcohol (PVA) as emulsifiers. These polymeric systems were analyzed by SEM, FTIR and optical microscopy. The conditions of the microspheres forming were varied and the preparation was performed by changing different parameters such as: the nature of the polymer, the stirring speed, organic solvent, surfactant nature, and concentration, which allows the study of their effect on encapsulation efficiency and drug release kinetics. These parameters affect strongly the size of microspheres, the drug content and the drug release, the latter is settled in an artificially reconstituted media of pH = 1.2 transcribed from the stomachal medium.


Author(s):  
Sylvester O. Eraga ◽  
Matthew I. Arhewoh ◽  
Ogochukwu A. Meko

Background: The study aimed to evaluate the effect of arachis oil and liquid paraffin on metoclopramide release from transdermal films. Objectives: Batches of metoclopramide films were prepared with hydroxypropyl methyl cellulose (HPMC), arachis oil or liquid paraffin and Tween 80 as plasticizer. The films were evaluated for their physiochemical properties, in vitro and ex vivo drug release and drug release kinetics. Drug-excipient interactions were investigated using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared (FTIR) spectroscopy. Methods: The transdermal films had a weight range of 0.22-0.24 g, folding endurance of 300-306, percentage moisture content and uptake of 2%-10% and 19%-110%, respectively and drug content of 98%-104%. There was similar condition in vitro release profile for the films but their ex vivo profiles exhibited variable drug release with the P3 (30% arachis oil) giving the highest drug (almost 100%) release.  Results: The release kinetics of metoclopramide followed the first order and Korsemeyer-Peppas models more closely as seen in their correlation coefficients (R2) of 0.9832 and 0.9560, respectively. Drug-excipient compatibility studies showed no interactions between excipients and metoclopramide. Conclusion: The formulated transdermal films showed controlled drug release over a period of 12 h. Arachis oil and liquid paraffin showed similar permeation enhancing ability. These enhanced permeation properties of the films could be helpful in the development of alternative route for metoclopramide administration in the management of emesis with improved patient acceptance.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


Author(s):  
Anjali Pandya ◽  
Rajani Athawale ◽  
Durga Puro ◽  
Geeta Bhagwat

Background: The research work involves development of PLGA biodegradable microspheres loaded with dexamethasome for intraocular delivery. Objective: To design and evaluate long acting PLGA microspheres for ocular delivery of dexamethasone. Method: Present formulation involves the development of long acting dexamethasone loaded microspheres composed of a biodegradable controlled release polymer, Poly(D, L- lactide-co-glycolide) (PLGA), for the treatment of posterior segment eye disorders intravitreally. PLGA with monomer ratio of 50:50 of lactic acid to glycolic acid was used to achieve a drug release up to 45 days. Quality by Design approach was utilized for designing the experiments. Single emulsion solvent evaporation technique along with high pressure homogenization was used to facilitate formation of microspheres. Results: Particle size evaluation, drug content and drug entrapment efficiency were determined for the microspheres. Particle size and morphology was observed using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM) and microspheres were in the size range of 1-5 μm. Assessment of drug release was done using in vitro studies and transretinal permeation was observed by ex vivo studies using goat retinal tissues. Conclusion: Considering the dire need for prolonged therapeutic effect in diseases of the posterior eye, an intravitreal long acting formulation was designed. Use of biodegradable polymer with biocompatible degradation products was a rational approach to achieve this aim. Outcome from present research shows that developed microspheres would provide a long acting drug profile and reduce the frequency of administration thereby improving patient compliance.


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


2013 ◽  
Vol 813 ◽  
pp. 399-402
Author(s):  
Chimsook Thitipha ◽  
Thitiphan Chimsook

The aim of present work was to prepare floating microsphere of ketoprofen using matrix polymer of chitosan and poly (ethylene glycol) by solvent diffusion method. The floating microsphere of ketoprofen was prepared from matrix polymer of chitosan and poly (ethylene glycol) with various composition ratios and evaluated such as particle size, drug compatibility and drug release of microspheres. The scanning electron microscopy of microspheres confirmed their hollow structures with smooth surface. Formulation CPK 4 to CPK 6 exhibited the best controlled release pattern in ketoprofen. The concentration and size of poly (ethylene-glycol) affected the particle size, percentage yield and drug release of microspheres.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document