scholarly journals Fluidized Hot Melt Granulation Technique: An Approach to Improve Micromeritics Properties and Dissolution Rate of Efavirenz

Author(s):  
Deval J. Modi ◽  
Pragna K. Shelat ◽  
Divyesh H. Shastri

The Fluidized hot melt granulation technique is a process by which pharmaceutical powders are efficiently agglomerated using a low melting binder. The effect of the binder properties and concentrations on agglomerate growth mechanisms were studied in this research paper using this technique with the primary objective of improvement in the solubility and dissolution rate of efavirenz by melt-dispersion granulation employing meltable hydrophilic carrier and then to convert the melt dispersion into flowable and compressible dispersion granules to yield a rapidly dissolving tablet formulation. The Optimized concentrations of co-polymers like PEG 6000, PEG 4000, Gelucire 50/13, Gelucire 44/14, Poloxamer 188 and Poloxamer 407 in different ratios (i.e., 1:1, 1:2, 1:3 and 1:4) as meltable binder along with the drug were sprayed dropwise over lactose as diluent loaded into fluid bed chamber for the preparation of the granules of efavirenz and characterized for its micromeritical properties, DSC, XRD etc. The tablets prepared from the granules were evaluated for drug dissolution rate. The prepared granules were found to have excellent flow properties indicated by mean diameter D50:138µm, Carr’s index 13.92% and the drug content uniformity of 98.10%. XRD data exhibited partial loss of crystallinity as indicated by significantly less intensity of efavirenz peak in sample than pure efavirenz. Drug release from tablet was fast found 99.12% w/v within 30 minutes. Absence of Efavirenz endothermic peak at higher proportions of meltable binder reported by DSC data exhibited amorphous form of efavirenz led to complete solubilization and thus faster dissolution rate of efavirenz.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Jong-Hwa Lee ◽  
Hyeong Sik Jeong ◽  
Jong-Woo Jeong ◽  
Tae-Sung Koo ◽  
Do-Kyun Kim ◽  
...  

Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio (Polyvinylpyrrolidione-vinyl acetate 64, 1:1–1:4) and barrel temperature (200–240 °C), fixed at 20% of Cremophor® RH 40 and 15 rpm of the screw speed, using the hot-melt extruding technique. This study evaluates the solubility, dissolution behavior, and bioavailability for application to oral drug delivery and optimizes the formulation of rivaroxaban amorphous solid dispersion (RXB-ASD). Based on a central composite design, optimized RXB-ASD (PVP VA 64 ratio 1:4.1, barrel temperature 216.1 °C, Cremophor® RH 40 20%, screw speed 15 rpm) showed satisfactory results for dependent variables. An in vitro drug dissolution study exhibited relatively high dissolution in four media and achieved around an 80% cumulative drug release in 120 min. Optimized RXB-ASD was stable under the accelerated condition for three months without a change in crystallinity and the dissolution rate. A pharmacokinetic study of RXB-ASD in rats showed that the absorption was markedly increased in terms of rate and amount, i.e., the systemic exposure values, compared to raw RXB powder. These results showed the application of quality by design (QbD) in the formulation development of hot-melt extruded RXB-ASD, which can be used as an oral drug delivery system by increasing the dissolution rate and bioavailability.


2018 ◽  
Vol 4 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Ankita U. Patel ◽  
Dipti V. Caudhari ◽  
Pranav J. Shah ◽  
Shailesh A. Shah

2019 ◽  
Vol 45 (6) ◽  
pp. 959-967 ◽  
Author(s):  
Ran Li ◽  
Tian Yin ◽  
Yu Zhang ◽  
Jingxin Gou ◽  
Haibing He ◽  
...  

2013 ◽  
Vol 102 (12) ◽  
pp. 4330-4336 ◽  
Author(s):  
Sharleen Weatherley ◽  
B.O. MU ◽  
Michael R. Thompson ◽  
Paul J. Sheskey ◽  
Kevin P. O'Donnell

2012 ◽  
Vol 62 (4) ◽  
pp. 497-513 ◽  
Author(s):  
Simon Kukec ◽  
Franc Vrečer ◽  
Rok Dreu

The objective of this work was to investigate the influence of selected individual variables (binder content, inlet air temperature, and product endpoint temperature) of in situ fluid bed melt granulation on the granule particle size distribution and percentage of dissolved carvedilol using a three-factor, five-level circumscribed central composite design. Increased binder content had the effect of increasing the granule particle size and drug dissolution rate. The effect of inlet air temperature and product endpoint temperature was found to be more pronounced in case of granule particle size parameters. Within the studied intervals, the optimal quantity of binder as well as optimal process parameters were identified and validated using response surface methodology. Utilizing these optimal process and formulation parameters, successful scaling up of the fluid bed melt granulation process was carried out. Granule characteristics obtained at pilot scale are comparable to those obtained at laboratory scale.


2014 ◽  
Vol 466 (1-2) ◽  
pp. 83-95 ◽  
Author(s):  
Ahmed S Zidan ◽  
Mohamed Ebeed ◽  
Hanaa Elghamry ◽  
Alaia Badawy

2002 ◽  
Vol 70 (3) ◽  
pp. 309-316
Author(s):  
Okonogi S ◽  
Sirithunyalung J ◽  
Sirithunyalig B ◽  
Wolschann P ◽  
Viernstein H

Solid dispersions of ofloxacin (OFX) and of a number of carriers including chitosan and the water soluble polymers polyethylene glycol (PEG) 4000, PEG 20000, and polyvinylpyrrolidone K- 90 were prepared by solvent evaporation method in order to increase the dissolution of the drug. The solid dispersions were subjected to X-ray diffraction, DSC, and dissolution to characterize their physicochemical and dissolution properties. The results demonstrated a decrease in drug crystallinity at higher amounts of carrier. Dissolution studies indicated that the dissolution rate of OFX was markedly increased in these solid dispersion systems compared with the pure drug. The results also showed that the increase in dissolution rate was higher when the weight fraction of carriers increased. An influence of molecular weight of PEG on OFX dissolution could also be observed. In solid dispersion with 1:9 ratio drug to carrier, PEG 4000 gave highest drug dissolution rate, whereas in 1:1 ratio, chitosan seems to be the best carrier for drug release. It was concluded that chitosan might be the carrier of choice for dissolution enhancement in solid dispersions with high content of drug.


Sign in / Sign up

Export Citation Format

Share Document