ENDOTHELIAL NO-SYNTHASE GENE TRANSFER RESTORES REGENERATIVE CAPACITY OF ENDOTHELIAL PROGENITOR CELLS FROM PATIENTS WITH CORONARY ARTERY DISEASE

2008 ◽  
Vol 31 (4) ◽  
pp. 24
Author(s):  
Michael R Ward ◽  
Kathryn Isaac ◽  
Kathleen Thompson ◽  
Jonathan Vecchiarelli ◽  
Michael JB Kutryk ◽  
...  

Background: Endothelial progenitor cells (EPCs) from patients with coronary arterydisease (CAD) or CAD risk factors exhibit greatly reduced regenerativecapacity, which likely contributes to the relatively modest nature of the benefit seen in recent clinical trials of autologous cell therapy postmyocardial infarction. We hypothesized that eNOS overexpression will improve the functional capacity of EPCs from these patients. Methods and Results: EPCs were isolated from the peripheral blood ofpatients with high Framingham risk scores (FRS > 15%) and were transducedusing lentiviral vectors containing either eNOS or GFP (sham). We observed that eNOS-transduction significantly improved migration toward chemotactic factors(VEGF and SDF-1) compared to sham-transduced cells. EPCs were co-cultured witha mature endothelial cell (EC) line on Matrigel to measure their pro-angiogenicfunction in vitro. eNOS-transduced EPCs induced longer angiogenic tubes withmore branch points compared to sham-transduced cells, and exhibited higherassociation with EC tubes. We did not observe a significant difference in the adhesion of EPCs to an EC layer pre-activated with TNF-?, suggesting that the association to angiogenictubes is likely through a different mechanism. In immunodeficient mice, eNOS-transduced EPCs resulted in significant improvement in ischemic hindlimbperfusion compared to sham-transduced cells. PCR arrays revealed changes in angiogenic and pro-survivalgene expression in response to eNOS overexpression, providing preliminaryinsight into the mechanisms underlying its beneficial actions. Conclusions: The present data show that reduced regenerative activity of EPCsisolated from CAD patients can be significantly improved by the overexpressionof eNOS. The combination of cell and gene therapy may improve the efficacy ofautologous cell therapies for cardiovascular disease.

2007 ◽  
Vol 30 (4) ◽  
pp. 96
Author(s):  
Michael R. Ward ◽  
Qiuwang Zhang ◽  
Duncan J. Stewart ◽  
Michael J.B. Kutryk

Autologous endothelial progenitor cells (EPCs) have been used extensively in the development of cell-based therapy for acute MI. However, EPCs isolated from patients with CAD and/or CAD risk factors have reduced regenerative activity compared to cells from healthy subjects. As in endothelial cells, endothelial NO synthase (eNOS) expression and subsequent NO production are believed to be critical determinants of EPC function. Recently, the ability of EPCs to migrate in vitro in response to chemotactic stimuli has been shown to predict their regenerative capacity in clinical studies. Therefore, we hypothesized that the regenerative function of EPCs from patients with or at high risk for CAD will be enhanced by overexpression of eNOS, as assessed by migratory capacity. Methods: EPCs were isolated from the blood of human subjects with CAD risk factors (>15% Framingham risk score; FRS) (± CAD) by Ficoll gradient separation and differential culture. Following 3 days in culture, cells were transduced using lentivirus vectors containing either eNOS or GFP (sham) at an MOI of 3. The cells were cultured for an additional 5 days before being used in functional assays. Cell migration and chemotaxis in response to VEGF (50 ng/mL) and SDF-1 (100 ng/mL) were assessed using a modified Boyden Chamber assay. Results: Transduction at an MOI of 3 led to a ~90-100-fold increase in eNOS mRNA expression and a 5-6 fold increase in eNOS protein expression, as assessed by qRT-PCR and Western Blotting. Moreover, there was a significant improvement in the migration of EPCs following eNOS transduction compared to sham-transduced EPCs in response to both VEGF (44.3 ± 8.4 vs. 31.1 ± 4.6 cells/high power field; n=10, p < 0.05) and SDF-1 (51.9 ± 11.1 vs. 34.5 ± 3.3 cells/HPF; n=10, p < 0.05). Conclusions: These data show that the reduced migration capacity of EPCs isolated from patients with CAD and/or CAD risk factors can be significantly improved through eNOS overexpression in these cells. Thus, eNOS transduction of autologous EPCs may enhance their ability to restore myocardial perfusion and function following acute MI. We intend to further explore the regenerative potential of eNOS-transduced EPCs using various in vitro and in vivo models.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1152
Author(s):  
Alberto Polo-Montalvo ◽  
Laura Casarrubios ◽  
María Concepción Serrano ◽  
Adrián Sanvicente ◽  
María José Feito ◽  
...  

Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi-Nan Lee ◽  
Yih-Jer Wu ◽  
Hsin-I. Lee ◽  
Hsueh-Hsiao Wang ◽  
Chiung-Yin Chang ◽  
...  

AbstractThe therapeutic effects of ultrasonic microbubble transfection (UMT)-based vascular endothelial growth factor 165 (VEGF165) gene delivery on young and senescent endothelial progenitor cells (EPCs) were investigated. By UMT, plasmid DNA (pDNA) can be delivered into both young EPCs and senescent EPCs. In the UMT groups, higher pDNA-derived protein expression was found in senescent EPCs than in young EPCs. Consistent with this finding, a higher intracellular level of pDNA copy number was detected in senescent EPCs, with a peak at the 2-h time point post UMT. Ultrasonic microbubble delivery with or without VEGF improved the angiogenic properties, including the proliferation and/or migration activities, of senescent EPCs. Supernatants from young and senescent EPCs subjected to UMT-mediated VEGF transfection enhanced the proliferation and migration of human aortic endothelial cells (HAECs), and the supernatant of senescent EPCs enhanced proliferation more strongly than the supernatant from young EPCs. In the UMT groups, the stronger enhancing effect of the supernatant from senescent cells on HAEC proliferation was consistent with the higher intracellular VEGF pDNA copy number and level of protein production per cell in the supernatant from senescent cells in comparison to the supernatant from young EPCs. Given that limitations for cell therapies are the inadequate number of transplanted cells and/or insufficient cell angiogenesis, these findings provide a foundation for enhancing the therapeutic angiogenic effect of cell therapy with senescent EPCs in ischaemic cardiovascular diseases.


2005 ◽  
Vol 94 (12) ◽  
pp. 1270-1279 ◽  
Author(s):  
Bruno Delorme ◽  
Agnès Basire ◽  
Carla Gentile ◽  
Florence Sabatier ◽  
Frédéric Monsonis ◽  
...  

SummaryCD146 is an adhesion molecule present on endothelial cells throughout the vascular tree. CD146 is also expressed by circulating endothelial cells (CECs) widely considered to be mature endothelial cells detached from injured vessels. The discovery of circulating endothelial progenitor cells (EPCs) originating from bone marrow prompted us to investigate whether CD146 circulating cells could also contains EPCs. We tested this hypothesis using an approach combining elimination of CECs by an adhesion step, followed by immunomagnetic sorting of remaining CD146+ cells from the non adherent fraction of cord blood mononuclear cells. When cultured under endothelial-promoting conditions, these cells differentiated as late outgrowth endothelial colonies: they grew as a cobblestone monolayer, were uniformly positive for endothelial markers and did not express leukocyte antigens. They highly proliferated and were expanded in long-term culture without alterations of their phenotypic and functional properties (DiI-ac-LDL uptake, wound repair, capillary-like network formation, and TNFα response). Moreover, these cells colonized a Matrigel plug in immunodeficient mice (NOD/SCID). Finally, using 4-color flow cytometry analysis of purified CD34+ cells, we clearly discriminated, CD146+ EPCs (CD146+ CD34+ CD45+ CD133+ or CD117+), and CD146+ CECs (CD146+ CD34+, CD45− CD133− or CD117−), both in cord and adult peripheral blood. The relative proportions of the two CD146+ subsets varied in patients with myocardial infarction as compared to healthy subjects. Our study establishes that, beside CECs, CD146+ circulating cells contain a subpopulation of EPCs with potential use in proangiogenic therapy. In addition, the dual measurement of CD146+ CECs and CD146+ EPCs offers a promising tool for monitoring vascular injury/regeneration processes in clinical situations.


2009 ◽  
Vol 29 (5) ◽  
pp. 933-943 ◽  
Author(s):  
Anna Rosell ◽  
Ken Arai ◽  
Josephine Lok ◽  
Tongrong He ◽  
Shuzhen Guo ◽  
...  

Endothelial progenitor cells (EPCs) may provide novel opportunities for therapeutic angiogenesis after ischemic diseases. However, it is unclear how the angiogenic potential of EPCs might be affected by an inflammatory environment. We examine how the potent cytokine interleukin-1β (IL-1β) affects angiovasculogenic responses in EPCs in culture. Mononuclear cells isolated from mouse spleen were plated on fibronectin-coated wells and grown in EGM-2 MV media. Endothelial progenitor cells were phenotyped using multiple markers (UEA-Lectin, ac-LDL, CD133, CD34, vWillebrand Factor, Flk-1) and to identify the IL-1 Receptor-I. We quantified cell and colony counts and performed MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) and Matrigel assays, in vitro, under control and IL-1β (10 ng/mL) conditions. Endothelial progenitor cells exposed to IL-1β increased in the number of cells and colonies compared with untreated cells, without any effect on cell metabolic integrity. Furthermore, IL-1β treatment augmented EPC angiogenic function, significantly increasing the number of vessel-like structures in the Matrigel assay. An early phosphorylation of ERK1/2 occurred after IL-1β stimulation, and this pathway was inhibited if IL-1 Receptor-I was blocked. Our results suggest that IL-1β is a potent stimulator of in vitro angiogenesis through ERK signaling in mouse EPCs. Further studies are warranted to assess how interactions between proinflammatory environments and EPC responses may be leveraged to enhance therapeutic angiogenesis.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Chiraz El-Aouni ◽  
Franziska Globisch ◽  
Achim Pfosser ◽  
Georg Stachel ◽  
Rabea Hinkel ◽  
...  

Recruitment of endothelial progenitor cells to the sites of ischemia is a prerequisite for efficient therapeutic neovascularization via vasculogenesis. Chemokines play a major role in the homing of EPCs at the ischemic vasculature, a mechanism fading in chronic ischemia. To overcome this limitation, we constructed an artificial adhesion molecule consisting of a GPI-anchor, a fractalkine-backbone and an SDF-1 head (SDF-1-fra-GPI), which was applied for enhanced recruitment of embryonic EPCs (eEPCs: CXCR4++, Tie2++, Thrombomodulin++, CD34-, MHCI-, vWF inducible, eNOS inducible) in vitro and in vivo . Methods: In a flow chamber adhesion assay, Control plasmids (pcDNA or GPI-SDF-1 cDNA) were compared to the SDF-1-fra-GPI construct for eEPC recruitment 24h after liposomal transfection of rat endothelial cells. In vivo, in rabbits (n=5 per group) at day 7 (d7) after femoral artery excision, 1 mg of the SDF-1-fra-GPI or eGFP cDNA was transfected into the ischemic limb. At d9, ischemic hindlimbs were retroinfused with 5x10 6 eEPCs. Angiography was performed for collateral quantification and frame count score at d9 and d37 (% of d9), capillary density was assessed via PECAM-1-staining (capillaries/muscle fiber = c/mf). Results: In vitro, eEPC adhesion (16±12 cells/field) was increased to a higher extent by SDF-1-fra-GPI (79±13) than SDF1-GPI (54±8) or control vector (37±8). In vivo , eEPC adhesion in the ischemic hindlimb after SDF-1-fra-GPI transfection compared to mock transfection (30±3 vs. 9±1 cells/field). Whereas capillary density was unaffected (1.66±0.30 SDF-1-Fra-GPI vs. 1.56±0.29 eEPCs), collateral growth (152±10% SDF-1-fra-GPI vs. 124±13%) as well as perfusion score (198±17% SDF-1-fra-GPI vs.160±6% eEPCs) further increased after SDF-1-fra-GPI transfection (controls: 1.24±0.12 c/mf, collaterals 105±8%, perfusion score 112±11%). We conclude that recruitment of EPCs expressing CXCR4 (the SDF-1 receptor) may benefit from pre-treatment of the recipient vasculature with SDF-1-Fra-GPI, an artificial adhesion molecule. This approach might be valuable for enhancing EPC recruitment in the scenario of therapeutic neovascular-ization of chronic ischemic syndromes.


2017 ◽  
Vol 35 (2) ◽  
pp. 69-76
Author(s):  
Sara Shoeibi ◽  
Shabnam Mohammadi ◽  
Hamid Reza Sadeghnia ◽  
Elahe Mahdipour ◽  
Majid Ghayour-Mobarhan

Sign in / Sign up

Export Citation Format

Share Document