scholarly journals KIF4A: A potential biomarker for prediction and prognostic of prostate cancer

2020 ◽  
Vol 43 (3) ◽  
pp. E49-59 ◽  
Author(s):  
Jiahong Chen ◽  
Maozhang Li ◽  
Shumin Fang ◽  
Xiaobo Zhou ◽  
Jinxian Liao ◽  
...  

Purpose: To investigate the clinical relevance and biological function of the kinesin super-family protein 4A (KIF4A) expression in prostate cancer (PCa). Methods: We examined 1) the relationship between the expression of KIF4A and clinico-pathological characteristics of PCa patients using a tissue microarray and the Cancer Genome Atlas database, 2) the prognostic value of KIF4A expression in patients using Kaplan-Meier plots and 3) the functions of KIF4A in LNCaP and DU145 cells, such as cell proliferation, cell cycle and cell apoptosis. Results: Compared with normal prostate, the mRNA and protein expressions of KIF4A were up-regulated in PCa. The up-regulation expression rates of KIF4A in PCa were significantly related to the Gleason score (P

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yang-Hong Dai ◽  
Ying-Fu Wang ◽  
Po-Chien Shen ◽  
Cheng-Hsiang Lo ◽  
Jen-Fu Yang ◽  
...  

AbstractIn the era of immunotherapy, there lacks of a reliable genomic predictor to identify optimal patient populations in combined radiotherapy and immunotherapy (CRI). The purpose of this study is to investigate whether genomic scores defining radiosensitivity are associated with immune response. Genomic data from Merged Microarray-Acquired dataset (MMD) were established and the Cancer Genome Atlas (TCGA) were obtained. Based on rank-based regression model including 10 genes, radiosensitivity index (RSI) was calculated. A total of 12832 primary tumours across 11 major cancer types were analysed for the association with DNA repair, cellular stemness, macrophage polarisation, and immune subtypes. Additional 585 metastatic tissues were extracted from MET500. RSI was stratified into RSI-Low and RSI-High by a cutpoint of 0.46. Proteomic differential analysis was used to identify significant proteins according to RSI categories. Gene Set Variance Analysis (GSVA) was applied to measure the genomic pathway activity (18 genes for T-cell inflamed activity). Kaplan-Meier analysis was performed for survival analysis. RSI was significantly associated with homologous DNA repair, cancer stemness and immune-related molecular features. Lower RSI was associated with higher fraction of M1 macrophage. Differential proteomic analysis identified significantly higher TAP2 expression in RSI-Low colorectal tumours. In the TCGA cohort, dominant interferon-γ (IFN-γ) response was characterised by low RSI and predicted better response to programmed cell death 1 (PD-1) blockade. In conclusion, in addition to radiation response, our study identified RSI to be associated with various immune-related features and predicted response to PD-1 blockade, thus, highlighting its potential as a candidate biomarker for CRI.


2021 ◽  
Author(s):  
Jun Du ◽  
Jinguo Wang

Abstract Background: The expression and molecular mechanism of cysteine rich transmembrane module containing 1 (CYSTM1) in human tumor cells remains unclear. The aim of this study was to determine whether CYSTM1 could be used as a potential prognostic biomarker for hepatocellular carcinoma (HCC).Methods: We first demonstrated the relationship between CYSTM1 expression and HCC in various public databases. Secondly, Kaplan–Meier analysis and Cox proportional hazard regression model were performed to evaluate the relationship between the expression of CYSTM1 and the survival of HCC patients which data was downloaded in the cancer genome atlas (TCGA) database. Finally, we used the expression data of CYSTM1 in TCGA database to predict CYSTM1-related signaling pathways through bioinformatics analysis.Results: The expression level of CYSTM1 in HCC tissues was significantly correlated with T stage (p = 0.039). In addition, Kaplan–Meier analysis showed that the expression of CYSTM1 was significantly associated with poor prognosis in patients with early-stage HCC (p = 0.003). Multivariate analysis indicated that CYSTM1 is a potential predictor of poor prognosis in HCC patients (p = 0.036). The results of biosynthesis analysis demonstrated that the data set of CYSTM1 high expression was mainly enriched in neurodegeneration and oxidative phosphorylation pathways.Conclusion: CYSTM1 is an effective biomarker for the prognosis of patients with early-stage HCC and may play a key role in the occurrence and progression of HCC.


2021 ◽  
Author(s):  
Jun Du ◽  
Mengxiang Zhu ◽  
Wenwu Yan ◽  
Changsheng Yao ◽  
Qingyi Li ◽  
...  

Abstract Background The molecular role of carboxypeptidase X, M14 family member (CPXM1) in oncogenesis or tumor progression remains unclear. The aim of this study was to determine whether CPXM1 can be used as a potential prognostic biomarker for gastric cancer (GC). Methods We first demonstrated the relationship between CPXM1 expression and GC in various public databases. Secondly, the expression of CPXM1 in GC tissues was further verified by immunohistochemical staining using tissue microarray containing 96 cases of GC patients. Kaplan–Meier analysis and a Cox proportional hazard regression model were performed to evaluate the relationship between the expression of CPXM1 and the survival of GC patients. Finally, we used the expression data of CPXM1 in The Cancer Genome Atlas database to predict CPXM1-related signaling pathways through bioinformatics analysis. Results The expression level of CPXM1 in GC tissues was significantly correlated with tumor size (p = 0.041) and lymph node metastasis (p = 0.014). In addition, Kaplan–Meier analysis showed that the expression of CPXM1 in GC tissues was significantly associated with poor prognosis (p = 0.011). Multivariate analysis indicated that CPXM1 is a potential predictor of poor prognosis in GC patients (p = 0.026). The results of biosynthesis analysis demonstrated that the data set of CPXM1 high expression was mainly enriched in cancer-related signal pathways. Conclusion CPXM1 is an effective biomarker for the prognosis of GC patients and may play a key role in the occurrence and progression of GC.


2022 ◽  
Vol 12 ◽  
Author(s):  
Guoda Song ◽  
Yucong Zhang ◽  
Hao Li ◽  
Zhuo Liu ◽  
Wen Song ◽  
...  

Background: Ubiquitin and ubiquitin-like (UB/UBL) conjugations are one of the most important post-translational modifications and involve in the occurrence of cancers. However, the biological function and clinical significance of ubiquitin related genes (URGs) in prostate cancer (PCa) are still unclear.Methods: The transcriptome data and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA), which was served as training cohort. The GSE21034 dataset was used to validate. The two datasets were removed batch effects and normalized using the “sva” R package. Univariate Cox, LASSO Cox, and multivariate Cox regression were performed to identify a URGs prognostic signature. Then Kaplan-Meier curve and receiver operating characteristic (ROC) curve analyses were used to evaluate the performance of the URGs signature. Thereafter, a nomogram was constructed and evaluated.Results: A six-URGs signature was established to predict biochemical recurrence (BCR) of PCa, which included ARIH2, FBXO6, GNB4, HECW2, LZTR1 and RNF185. Kaplan-Meier curve and ROC curve analyses revealed good performance of the prognostic signature in both training cohort and validation cohort. Univariate and multivariate Cox analyses showed the signature was an independent prognostic factor for BCR of PCa in training cohort. Then a nomogram based on the URGs signature and clinicopathological factors was established and showed an accurate prediction for prognosis in PCa.Conclusion: Our study established a URGs prognostic signature and constructed a nomogram to predict the BCR of PCa. This study could help with individualized treatment and identify PCa patients with high BCR risks.


2021 ◽  
Author(s):  
Zijian Zhang ◽  
Jinggang Mo ◽  
Chong Jin ◽  
Hao Jiang ◽  
Zhongtao Liu ◽  
...  

Abstract Background: ATG101 plays a significant role in the occurrence and development of tumours by regulating autophagy. Our study aimed to research the correlation between the expression of ATG101 and tumour prognosis and its role in tumour immunity. Methods: First, integrated analysis of The Cancer Genome Atlas and Genotype-Tissue Expression portals were used to analyse the expression of ATG101. Then, we used Kaplan–Meier curves for survival analysis. Next, we analysed the relationship between ATG101 expression and six immune cells, the immune microenvironment and immune checkpoints. Besides, we analysed the relationship between the expression of ATG101 and methyltransferase. Finally, we used GSEA to study the function of ATG101 in COAD and LIHC. Results: Integrated analysis showed that ATG101 was overexpressed in different tumours. Kaplan–Meier curves found that ATG101 was associated with poor prognosis in most tumours. We found that that ATG101 can be used as a target and prognostic marker of tumour immunotherapy for different tumours. We also found that ATG101 regulates DNA methylation. GSEA analysis showed that ATG101 may play a critical role in COAD and LIHC.Conclusions: Our study highlights the significance of ATG101 in the study of tumour immunity from a pan-cancer perspective.


2019 ◽  
Vol 121 (8) ◽  
pp. 699-709 ◽  
Author(s):  
Mi Yang ◽  
Weiqiang Huang ◽  
Yaling Sun ◽  
Huazhen Liang ◽  
Min Chen ◽  
...  

Abstract Background The Copper Metabolism MURR1 (COMM) domain family has been reported to play important roles in tumorigenesis. As a prototype for the COMMD family, the expression pattern and biological function of COMMD6 in human tumours remain unknown. Methods COMMD6 expression in BALB/c mice and human tissues was examined using real-time PCR and immunohistochemistry. Kaplan–Meier analysis was applied to evaluate the prognosis of COMMD6 in tumours. Competing endogenous RNA (ceRNA) and transcriptional regulation network were constructed based on differentially expressed mRNAs, microRNAs and long non-coding RNAs from the cancer genome atlas database. GO and KEGG enrichment analysis were used to explore the bioinformatics implication. Results COMMD6 expression was widely observed in BALB/c mice and human tissues, which predicted prognosis of cancer patients. Furthermore, we shed light on the underlying tumour promoting role and mechanism of COMMD6 by constructing a TEX41-miR-340-COMMD6 ceRNA network in head and neck squamous cell carcinoma and miR-218-CDX1-COMMD6 transcriptional network in cholangiocarcinoma. In addition, COMMD6 may modulate the ubiquitination and degradation of NF-κB subunits and regulate ribonucleoprotein and spliceosome complex biogenesis in tumours. Conclusions This study may help to elucidate the functions and mechanisms of COMMD6 in human tumours, providing a potential biomarker for tumour prevention and therapy.


2021 ◽  
Author(s):  
Yaguang Fan ◽  
Yingrui Zhu

Abstract Ovarian serous cystadenocarcinoma (OV) is a malignant tumor that often has a poor prognosis because of its late detection. The expression of PTPN2 is associated with a variety of tumors, but its effect on OV is not well understood. Therefore, we analyzed the relationship between PTPN2 and the prognosis of OV. Analysis of patients with OV using The Cancer Genome Atlas revealed an association between PTPN2 expression and the prognosis of OV. We established a model of the relationship between these factors by logistic regression, which showed a significant correlation between the tumor grade and decreased expression of PTPN2. Kaplan-Meier survival analysis showed that low PTPN2 expression was associated with poor overall survival. Further analysis of the expression of immune cells in OV using the ssGSEA package revealed a significant correlation between the expression level of PTPN2 in OV and the numbers of mast, gamma delta, helper, and central memory T cells. We also found differences between the phenotypic pathways associated with low PTPN2 expression and pathways of genes and proteins that determine epithelial-mesenchymal transformation. Finally, a network diagram of protein molecular interactions was drawn using the STRING database, which showed that PTPN2 was closely related to the signal converter and transcriptional activator family and Janus kinase family. Thus, PTPN2 shows potential for use as a prognostic biomarker in OV and is associated with immune infiltration.


2021 ◽  
Author(s):  
Qian Li ◽  
Yannan Chen ◽  
Li Yang ◽  
Yaguang Fan ◽  
Feiyan Li ◽  
...  

Abstract Ovarian serous cystadenocarcinoma (OV) is a malignant tumor that often has a poor prognosis because of its late detection. The expression of PTPN2 is associated with a variety of tumors, but its effect on OV is not well understood. Therefore, we analyzed the relationship between PTPN2 and the prognosis of OV. Analysis of patients with OV using The Cancer Genome Atlas revealed an association between PTPN2 expression and the prognosis of OV. We established a model of the relationship between these factors by logistic regression, which showed a significant correlation between the tumor grade and decreased expression of PTPN2. Kaplan-Meier survival analysis showed that low PTPN2 expression was associated with poor overall survival. Further analysis of the expression of immune cells in OV using the ssGSEA package revealed a significant correlation between the expression level of PTPN2 in OV and the numbers of mast, gamma delta, helper, and central memory T cells. We also found differences between the phenotypic pathways associated with low PTPN2 expression and pathways of genes and proteins that determine epithelial-mesenchymal transformation. Finally, a network diagram of protein molecular interactions was drawn using the STRING database, which showed that PTPN2 was closely related to the signal converter and transcriptional activator family and Janus kinase family. Thus, PTPN2 shows potential for use as a prognostic biomarker in OV and is associated with immune infiltration.


Author(s):  
Senbang Yao ◽  
Wenjun Chen ◽  
He Zuo ◽  
Ziran Bi ◽  
Xiuqing Zhang ◽  
...  

AbstractOxidative DNA damage is closely related to the occurrence and progression of cancer. Oxidative stress plays an important role in alcohol-induced hepatocellular carcinoma (HCC). Aldehyde dehydrogenase (ALDH) is a family of enzymes that plays an essential role in the reducing oxidative damage. However, how ALDHs family affects alcohol-related HCC remains obscure. We aimed to explore the correlation between the differential expression of ALDHs in patients with HCC and pathological features, as well as the relationship between ALDHs and prognosis, and finally analyze the possible mechanism of ALDHs in targeted therapy of HCC. The data of HCC were downloaded from The Cancer Genome Atlas (TCGA) database. This research explored the expression and prognostic values of ALDHs in HCC using Oncomine, UALCAN, Human Protein Atlas, cBioPortal, Kaplan–Meier plotter, GeneMANIA, Tumor Immune Estimation Resource, GEPIA databases, and WebGestalt. Low mRNA and protein expressions of ALDHs were found to be significantly associated with tumor grade and clinical cancer stages in HCC patients. In particular, the loss of ALDH expression is more obvious in Asians, and its effect on prognosis is far more significant than that in the White race. Our findings play an important role in the study of prognostic markers and anti-liver cancer therapeutic targets for the members of the ALDHs family, especially in patients with liver cancer in Asia.


2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document