scholarly journals Cytostatic Action of Novel Histone Deacetylase Inhibitors in Androgen Receptor-Null Prostate Cancer Cells

2021 ◽  
Vol 14 (2) ◽  
pp. 103
Author(s):  
Zohaib Rana ◽  
Joel D. A. Tyndall ◽  
Muhammad Hanif ◽  
Christian G. Hartinger ◽  
Rhonda J. Rosengren

Androgen receptor (AR)-null prostate tumors have been observed in 11–24% of patients. Histone deacetylases (HDACs) are overexpressed in prostate tumors. Therefore, HDAC inhibitors (Jazz90 and Jazz167) were examined in AR-null prostate cancer cell lines (PC3 and DU145). Both Jazz90 and Jazz167 inhibited the growth of PC3 and DU145 cells. Jazz90 and Jazz167 were more active in PC3 cells and DU145 cells in comparison to normal prostate cells (PNT1A) and showed a 2.45- and 1.30-fold selectivity and higher cytotoxicity toward DU145 cells, respectively. Jazz90 and Jazz167 reduced HDAC activity by ~60% at 50 nM in PC3 lysates. At 4 μM, Jazz90 and Jazz167 increased acetylation in PC3 cells by 6- to 8-fold. Flow cytometry studies on the cell phase distribution demonstrated that Jazz90 causes a G0/G1 arrest in AR-null cells, whereas Jazz167 leads to a G0/G1 arrest in DU145 cells. However, apoptosis only occurred at a maximum of 7% of the total cell population following compound treatments in PC3 and DU145 cells. There was a reduction in cyclin D1 and no significant changes in bcl-2 in DU145 and PC3 cells. Overall, the results showed that Jazz90 and Jazz167 function as cytostatic HDAC inhibitors in AR-null prostate cancer cells.

2020 ◽  
Vol 19 ◽  
pp. 153303382094806
Author(s):  
Guangxing Tan ◽  
Lin Jiang ◽  
Gangqin Li ◽  
Kuan Bai

Objective: To explore the effect and the related mechanism of STAT3 inhibitor AG-490 on inhibiting the proliferation of prostate cancer cells. Methods: PC3 cells and DU145 cells were cultured stably and treated with AG-490 to detect the changes in the activity of PC3 cells and DU145 cells. Thirty 6-8 weeks male BALB/c nude mouse were randomly divided into a control group, a DMSO group, and an AG-490 group to detect differences in various indexes . Results: The overexpression of miR-503-5p depends on the activation of STAT3. After treatment with AG-490, The proliferation and invasion of PC3 cells and DU145 cells and the expression of miR-503-5p were all reduced. Luciferase reporter assay demonstrated that the target proteins of miR-503-5p include PDCD4, TIMP-3, and PTEN. After treatment with AG-490, the expression of PDCD4, TIMP-3, and PTEN in cells was significantly up-regulated. IL-6-induced overexpression of miR-503-5p and restored the expression of STAT3, demonstrating the correlation between STAT3 and miR-503-5p. AG-490 can inhibit tumor growth and induce tumor cell apoptosis in the PC3 BALB/c nude mouse xenograft model. Western blotting and immunohistochemical staining showed that the expression levels of STAT3, Ki67, Bcl-2 and MMP-2 in the AG-490 group were significantly reduced, and the expression of PDCD4, TIMP-3 and PTEN increased. Conclusion: AG-490 can inhibit the growth of prostate cancer cells in a miR-503-5p-dependent manner by targeting STAT3. AG-490 is expected to become a new candidate drug for the treatment of prostate cancer.


2018 ◽  
Vol 46 (07) ◽  
pp. 1625-1643 ◽  
Author(s):  
Hung-En Chen ◽  
Ji-Fan Lin ◽  
Te-Fu Tsai ◽  
Yi-Chia Lin ◽  
Kuang-Yu Chou ◽  
...  

Allyl isothiocyanate (AITC), one of the most widely studied phytochemicals, inhibits the survival of human prostate cancer cells while minimally affecting normal prostate epithelial cells. Our study demonstrates the mechanism of AITC-induced cell death in prostate cancer cells. AITC induces autophagy in RV1 and PC3 cells, judging from the increased level of LC3-II protein in a dose- and time-dependent manner, but not in the normal prostate epithelial cell (PrEC). Inhibition of autophagy in AITC-treated cells decreased cell viability and enhanced apoptosis, suggesting that the autophagy played a protective role. There are several pathways activated in ATIC-treated cells. We detected the phosphorylation forms of mTOR, ERK, AMPK, JNK and p38, and ERK AMPK and JNK activation were also detected. However, inhibition of AITC-activated ERK, AMPK and JNK by pre-treatment of specific inhibitors did not alter autophagy induction. Finally, increased beclin-1 expression was detected in AITC-treated cells, and inhibition of AITC-induced beclin-1 attanuated autophagy induction, indicating that AITC-induced autophagy occurs through upregulating beclin-1. Overall, our data show for the first time that AITC induces protective autophagy in Rv1 and PC3 cells through upregulation of beclin-1. Our results could potentially contribute to a therapeutic application of AITC in prostate cancer patients.


2011 ◽  
Vol 26 (5) ◽  
pp. 669-674 ◽  
Author(s):  
Suk-Hyun Won ◽  
Hyo-Jeong Lee ◽  
Soo-Jin Jeong ◽  
Junxuan Lü ◽  
Sung-Hoon Kim

2020 ◽  
Author(s):  
Aiping Zhu ◽  
Kevin M Hopkins ◽  
Richard A Friedman ◽  
Joshua D Bernstock ◽  
Constantinos G Broustas ◽  
...  

Abstract Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.


2009 ◽  
Vol 16 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Jason M D'Antonio ◽  
Donald J Vander Griend ◽  
John T Isaacs

During middle G1 of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication. In both cases, the binding of androgen to the androgen receptor (AR) is required. However, the biochemical cascade involved in such AR-stimulated cell proliferation and DNA synthesis is dramatically different in normal versus malignant prostate cells. In normal prostate, AR-stimulated stromal cell paracrine secretion of andromedins stimulates DNA replication within prostatic epithelial cells, in which AR functions as a tumor suppressor gene by inducing proliferative quiescence and terminal differentiation. By direct contrast, nuclear AR in prostate cancer cells autonomously stimulates continuous growth via incorporation of AR into the pre-RC. Such a gain of function by AR-expressing prostate cancer cells requires that AR be efficiently degraded during mitosis since lack of such degradation leads to re-licensing problems, resulting in S-phase arrest during the subsequent cell cycle. Thus, acquisition of AR as part of the licensing complex for DNA replication represents a paradigm shift in how we view the role of AR in prostate cancer biology, and introduces a novel vulnerability in AR-expressing prostate cancer cells apt for therapeutic intervention.


2021 ◽  
Vol 22 (20) ◽  
pp. 11246
Author(s):  
Kyung-Hwa Jeon ◽  
Seojeong Park ◽  
Hae Jin Jang ◽  
Soo-Yeon Hwang ◽  
Aarajana Shrestha ◽  
...  

Castration-resistant prostate cancer (CRPC) is a clinical challenge in treatment because of its aggressive nature and resistance to androgen deprivation therapy. Topoisomerase II catalytic inhibitors have been suggested as a strategy to overcome these issues. We previously reported AK-I-190 as a novel topoisomerase II inhibitor. In this study, the mechanism of AK-I-190 was clarified using various types of spectroscopic and biological evaluations. AK-I-190 showed potent topoisomerase II inhibitory activity through intercalating into DNA without stabilizing the DNA-enzyme cleavage complex, resulting in significantly less DNA toxicity than etoposide, a clinically used topoisomerase II poison. AK-I-190 induced G1 arrest and effectively inhibited cell proliferation and colony formation in combination with paclitaxel in an androgen receptor–negative CRPC cell line. Our results confirmed that topoisomerase II catalytic inhibition inhibited proliferation and induced apoptosis of AR-independently growing prostate cancer cells. These findings indicate the clinical relevance of topoisomerase II catalytic inhibitors in androgen receptor-negative prostate cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 55
Author(s):  
Changwon Yang ◽  
Minkyeong Lee ◽  
Gwonhwa Song ◽  
Whasun Lim

Cisplatin is a standard treatment for prostate cancer, which is the third leading cause of cancer-related deaths among men globally. However, patients who have undergone cisplatin can rxperience relapse. tRNA-derived fragments (tRFs) are small non-coding RNAs generated via tRNA cleavage; their physiological activities are linked to the development of human diseases. Specific tRFs, including tRF-315 derived from tRNALys, are highly expressed in prostate cancer patients. However, whether tRF-315 regulates prostate cancer cell proliferation or apoptosis is unclear. Herein, we confirmed that tRF-315 expression was higher in prostate cancer cells (LNCaP, DU145, and PC3) than in normal prostate cells. tRF-315 prevented cisplatin-induced apoptosis and alleviated cisplatin-induced mitochondrial dysfunction in LNCaP and DU145 cells. Moreover, transfection of tRF-315 inhibitor increased the expression of apoptotic pathway-related proteins in LNCaP and DU145 cells. Furthermore, tRF-315 targeted the tumor suppressor gene GADD45A, thus regulating the cell cycle, which was altered by cisplatin in LNCaP and DU145 cells. Thus, tRF-315 protects prostate cancer cells from mitochondrion-dependent apoptosis induced by cisplatin treatment.


2003 ◽  
Vol 18 (2) ◽  
pp. 147-151 ◽  
Author(s):  
A. Ünlü ◽  
R.E. Leake

The effect of TGFβ1 on the proliferation and plasminogen activator system (PA) of two prostate carcinoma cell lines, PC3 and DU145, was investigated. PA, particularly urokinase plasminogen activator (uPA), has been implicated in extracellular proteolysis, local invasiveness, metastatic spread and angiogenesis. High levels of uPA and plasminogen activator inhibitor-1 (PAI-1) correlate with poor prognosis in several cancers. TGFβ1 had no significant effect on the proliferation of either cell line. TGFβ1 increased the production of uPA in PC3 and DU145 cells. Despite the very low PAI-1 protein levels in both cell lines, TGFβ1 treatment resulted in a remarkable increase in PAI-1 secretion. PAI-2 protein was also increased by 59% in the PC3 cells. A divergent effect of TGFβ1 on the uPA enzyme activity was observed (28% decrease in PC3 and 131% increase in DU145 cells). Overall, TGFβ1 treatment did not affect the invasion of reconstituted basement membrane of PC3 cells. In addition to the uPA:PAI-1 ratio, the presence of PAI-2 may be an important factor in the determination of metastatic sites for prostate cancer cells. In conclusion, the potential contribution of TGFβ1 to tumor invasion may be considered as positive, based on both loss of growth inhibition and stimulation of components of the invasive system of prostate carcinoma.


Sign in / Sign up

Export Citation Format

Share Document