scholarly journals Basic Study on Deformation Evaluation of Steel Wire Mesh for Rational Gabion Structure Design

2019 ◽  
Vol 2 (2) ◽  
pp. 109-115
Author(s):  
Hiroshi Nakazawa ◽  
Tsuyoshi Nishi ◽  
Hiroyuki Kurihara ◽  
Daisuke Suetsugu ◽  
Tadashi Hara

Gabion structures are used in a variety of ways in Japan and around the world because they allow for the creation of simple structures at highly reasonable construction costs and completion periods. Previous earthquake damage surveys have shown that, in many cases, gabion structures did not collapse even though deformation was allowed, and have demonstrated that the wire mesh used in their construction has a high confinement effect on the stones filling the gabion. Despite this, gabions have not been actively utilized, nor have they been used to construct permanent structures in Japan because the design and construction of such structures are based on experience, and a standardized design method has not been developed. Hence, in order to facilitate development a design method for gabion-based structures, we must first go back to the basics and establish a detailed explanation of the wire mesh deformation mechanism of such structures. In this study, we performed tensile tests on wire meshes of different shapes in order to determine their strength and deformation characteristics and then conducted numerical analyses using the results obtained. The tensile tests revealed that deformation characteristics differed depending on the mesh shape and tensile direction. We also showed that the direction in which the tension acts and the mesh nodes are important, and that the test results could be reproduced via numerical analysis with the finite element method by using beam elements.

2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


Author(s):  
Abeer M. Erfan ◽  
Tamer H. K. Elafandy ◽  
Mahmoud M. Mahran ◽  
Mohamed Said

Many researchers have been conducted on the ferrocement as a low cost construction material and a flexible structural system. This experimental investigation on the behavior of ferrocement beams after exposed to different type of ferrocement and different of ferrocement layer are presented in this paper. The experimental program consisted of seven simply supported beams tested up to failure under four-point load. The dimensions of 150mm×250mm×2000mm. Each beam was reinforced using steel 2 f 12 in top and 2 f10 in bottom and the stirrups was 10 f 10/m. In addition to six of them contains ferrocement different steel wire meshes and different of ferrocement layer. The test specimens are divided in three groups and the results of each one compared with the control specimen. The first group (A) which used the welded wire mesh. The second group (B) which used the expanded wire mesh. But the third group (C) which reinforced using woven wire mesh. The mid span deflection, cracks, reinforcement and concrete strains of the tested beams were recorded and compared. The performance of the test beams in terms of ultimate flexure load cracking behavior and energy absorption were investigated. The experimental results emphasized that high ultimate loads, better crack resistance control, high ductility, and good energy absorption properties could be achieved by using the proposed ferrocement beams. The cracks propagation decreased and its number and width decreased by using woven, expanded and welded wire mesh especially in specimens with two layers of wire mesh. Theoretical calculation was carried out to compare the oplained results with the theoretical ones, which show good agreement.


2019 ◽  
Vol 817 ◽  
pp. 536-543
Author(s):  
Romina Sisti ◽  
Antonio Borri ◽  
Marco Corradi ◽  
Allen Dudine

This paper presents the results of a laboratory investigation carried out on reinforced mortar plates. Reinforced mortar plates are often applied for shear reinforcement of wall panels. Different reinforcement materials have been embedded into the mortar plates: GFRP (Glass Fiber Reinforced Polymers) grids, fiberglass fabrics and welded steel-wire meshes. This is the first stage in the development of a new type of GFRP-reinforced mortar jacketing, that will provide a solution to enhance the lateral capacity of historic buildings. Such reinforced plates can also be used in applications on new masonry constructions where buildings with damaged or cracked wall panels need to be repaired or retrofitted. The mortar plates were built from commercially available GFRP grids and fabrics that were embedded into the mortar to form a reinforced-mortar square structure of 1 m with a thickness of 30 mm. The plates were tested in the laboratory, under quasi-static patch loads that exceeded the expected seismic loads. The goal of the testing program was to assess the design and construction techniques used, with a view to designing the reinforcement of a historic building. The laboratory tests demonstrated that the GFRP-reinforced plates had sufficient stiffness and strength to function effectively. By comparing the results with the more traditional steel-wire mesh reinforcement, it was also possible to perform a comparative analysis.


2017 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Zeinab A. Etman ◽  
Mounir M. Kamal ◽  
Mohamed R. Afify ◽  
Tamer I. Ahmaed

This research aimed to investigate the feasibility of using self-compacting concrete in civil engineering applications as a producing a precast hollow unit. The behavior of the hollow sections cast with self-compacted concrete beneath line-load was evaluated. An experimental work was carried out and a finite element model with ANSYS (version 15) was adopted. A total of fourteen hollow beams were cast and tested. The most variables taken into thought were; the types of reinforcement (reinforced steel bar and steel wire meshes), the types of steel wire meshes (expanded and welded steel wire mesh), number of layers of steel meshes (one layer and two layers), cross section thickness of concrete (40 mm and 60mm), concrete cover thickness (15mm and 20 mm) and also the shapes of cross section (square or circular). Special attention to initial cracking load, ultimate load, deflection, cracking pattern, energy absorption and ductility index were investigated. Good agreement was found compared with the experimental results. Out of this research; this paper presents applications of self-compacted concrete for casting skinny structural hollow members. These members can be used as precast units within the construction of the tunnel to decrease the problems in highway roads due to the difficulty of using crossing bridges particularly for kids and old people which are very useful for developing countries with great economic advantages.


2005 ◽  
Author(s):  
Walfre Franco ◽  
Henry Vu ◽  
Guillermo Aguilar

Cryogen spray cooling allows removing large amounts of heat in short periods of time. Previous investigations have shown that stainless steel wire meshes placed between spray nozzle and target surfaces effectively increase uniformity in lateral heat extraction while reducing cooling efficiency. In this study we used phase Doppler particle analysis to assess the effect of a wire mesh on the diameter and velocity radial distributions of cryogen droplets and, consequently, on the surface heat transfer. We measured at 40 mm downstream and various radial locations within steady state spray cones from two different nozzles without and with a mesh at two mesh-nozzle distances. Results show that with the mesh, droplets lose velocity and increase in size. The closer to the center of the spray cone the droplets are, the larger the loss in velocity. As a consequence, the radial velocity profile is more uniform relative to that without a mesh.


2018 ◽  
Vol 910 ◽  
pp. 41-45 ◽  
Author(s):  
Krishnamorthy Raghukandan ◽  
Somasundaram Saravanan

In this study, aluminum based composites with stainless steel wire-mesh as reinforcement is fabricated by explosive compaction technique. Stacks containing four layers of alternatively positioned aluminum sheets and stainless steel wire-meshes are explosively compacted at varied explosive masses and the results are reported. Microstructure of explosive compacted aluminum composite reveal a smooth interface at lower explosive mass, while formation of reacted products are observed at higher energetic conditions. Though the hardness of the post clad composite is higher than pre-clad materials, the maximum hardness is observed at the first interface.


Author(s):  
Lubomir Matejicka ◽  
Christos T. Georgakis ◽  
Holger H. Koss ◽  
Philipp Egger

<p>Numerous cable-supported bridges in cold climate regions are prone to seasonal ice or snow shedding, primarily from the bridge cables. Specific atmospheric conditions are required to trigger this phenomenon, which often results in dangerously sized pieces of ice or snow falling off the cables on the bridge deck below. Ice or snow shedding events that have led to bridge closures and insurance claims have been increasingly reported throughout the world in the past two decades. In this paper, a recently developed passive solution in the form of a steel wire mesh, which can be effectively used on new as well as on existing bridges, is introduced. Despite having a higher drag coefficient than the conventional helically filleted cable surface, the wire mesh is capable of retaining the ice on the surface of the cable for an extended time. This leads to prolonged ice melting and fragmentation of the ice before or during shedding, thus achieving a substantial risk reduction.</p>


Author(s):  
Jun Li ◽  
Xiaofei Ma ◽  
Tuanjie Li

The wire mesh of a space mesh reflector antenna is a core component that reflects electromagnetic waves, greatly influencing the functions of the antenna. Due to the complex weaving structure of the wire mesh, there are thousands of contact nodes per square meter. Therefore, modeling and analyzing the wire mesh becomes very difficult. It is both time-consuming and labor-intensive to calculate the contact force of the wire mesh. In this paper, fast contact force calculation for a wire mesh based on support vector machine (SVM) was developed. First, the wire mesh was discretized into small-sized wire meshes with the same shape. Then, the contact forces of the discretized wire meshes with different boundary conditions can be obtained by the finite element method. Afterwards, a (SVM) model was established based on a small part of the contact forces. Finally, the accuracy and efficiency of the fast calculation model was validated through the numerical examples.


2016 ◽  
Vol 869 ◽  
pp. 435-440 ◽  
Author(s):  
Felipe Farage David ◽  
Sayd Farage David ◽  
Lucas Lira Silveira ◽  
Ricardo Arthur Sanguinetti Ferreira

The reinforcing wire production CA-60 is highly relevant due to its wide application in concrete products (welded wire mesh and truss girder), driven by growing demand for products of the construction area. One of the properties required by ABNT / NBR 7480/07 is the yield stress (σe), which has a direct effect on the maximum load that the structural component may be subjected in service. The addition of steel wire temperature during cold rolling increases the σe and reduces the ductility due to the aging phenomenon. These variations occur due to the formation of solute atoms atmosphere around the dislocations. The purpose of this paper is to study the behavior of σe during heat treatment of static aging at 100 °C in the wire CA-60 steel made from the niobium microalloyed steel equivalent ASTM A913 and the equivalent ASTM 1013 steel. As a result the wire carbon steel 1013 showed the same variation of σe during static aging of niobium microalloyed steel A913. This phenomenon was justified because of the increased level of pro-eutectoid ferrite and grain size in the carbon steel 1013.


2013 ◽  
Vol 655-657 ◽  
pp. 1337-1341
Author(s):  
Won Ho Park ◽  
Seung Hee Kang ◽  
Chae Sil Kim

In this research, we will perform a basic study to develop an Anchor Auto Drop System for Chain dia. Φ107mm/G3 (Refloat load 45ton) Windlass model. First of all, to evaluate the control characteristics of the Windlass, we made an analysis model using the commercial software ‘Simulation-X’. Then, we analyzed the control characteristics of the Anchor falling speed and used PID control to evaluate the falling speed control. Additionally, we analyzed the desired falling speeds of 2, 3, 4 m/s when the Anchor and all chains were a total of 44 tons in weight at 100 m distance. Also, we obtained results of Caliper brake loads and torque changes and we were able to determine that the braking pressure and torque are increased when the load is increased. We analyzed the gear load when the brake is implemented and the Anchor is at 200 m distance and has a total weight of 69 tons. And, for the winch structure design, we obtained a basic design method to develop the auto drop system for a Marine Windlass in terms of the important elements.


Sign in / Sign up

Export Citation Format

Share Document