scholarly journals Determination of Ground Subsidence by Sentinel-1 SAR Data (2018-2020) over Binh Duong Quarries, Vietnam

Author(s):  
Nguyen Quoc Long ◽  
Tran Van Anh ◽  
Bui Khac Luyen

Mining-induced subsidence is often determined by field survey methods, e.g., using total station or global navigation satellite system (GNSS) technology. The advantage of these methods is high accuracy, but they are usually employed in a small-scale areas. Radar technology has been developed and applied to determine surface subsidence over a large area at a few millimeters accuracy. In this paper, 24 Sentinel-1B SAR images are used with the Permanent Scatter Interferometry (PSInSAR) method to determine the land subsidence of the Tan My-Thuong Tan quarries and surrounding areas in Binh Duong province, Vietnam. The results are compared with the average annual subsidence of 20 GNSS surveying points from January 2018 to March 2020. The correlation coefficient of annual average land subsidence of the two methods is bigger than 0.8, indicating the feasibility of applying the InSAR Sentinel-1 data processed by the PSInSAR method to determine the mining-induced subsidence of ground surfaces over quarries and surrounding areas.  

2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


Author(s):  
M. O. Ehigiator ◽  
S. O. Oladosu

With the use of Global Navigation Satellite System (GNSS) technology, it is now possible to determine the position of points in 3D coordinates systems. Lagos datum is the most common Mean Sea Level used in most parts of Nigeria. In Niger Delta, for instance Warri and its environs, the most commonly used datum for height determination is the Mean Lower Low Water Datum. It then becomes necessary to determine a constant factor for conversion between the two datum when the need arises as both are often encountered during Geomatics Engineering field operations. In this paper, the constant to be applied in converting between both datum was determined. The constant was found to be 17.79m. The horizontal and vertical accuracy standard was also determined as well as the stack maps.


2020 ◽  
Vol 12 (22) ◽  
pp. 3822
Author(s):  
María Inés Navarro-Hernández ◽  
Roberto Tomás ◽  
Juan M. Lopez-Sanchez ◽  
Abraham Cárdenas-Tristán ◽  
Jordi J. Mallorquí

The San Luis Potosi metropolitan area has suffered considerable damage from land subsidence over the past decades, which has become visible since 1990. This paper seeks to evaluate the effects of groundwater withdrawal on land subsidence in the San Luis Potosi Valley and the development of surface faults due to the differential compaction of sediments. For this purpose, we applied the Coherent Pixels Technique (CPT), a Persistent Scatterer Interferometry (PSI) technique, using 112 Sentinel-1 acquisitions from October 2014 to November 2019 to estimate the deformation rate. The results revealed that the deformation areas in the municipality of Soledad de Graciano Sánchez mostly exhibit subsidence values between −1.5 and −3.5 cm/year; whereas in San Luis Potosi these values are between −1.8 and −4.2 cm/year. The PSI results were validated by five Global Navigation Satellite System (GNSS) benchmarks available, providing a data correlation between the results obtained with both techniques of 0.986. This validation suggests that interferometric derived deformations agree well with results obtained from GNSS data. The strong relationship between trace fault, land subsidence,e and groundwater extraction suggests that groundwater withdrawal is resulting in subsidence induced faulting, which follows the pattern of structural faults buried by sediments.


2019 ◽  
Vol 11 (7) ◽  
pp. 787 ◽  
Author(s):  
Jing Qiao ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Duojie Weng

The geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of the Beidou navigation satellite system are maneuvered frequently. The broadcast ephemeris can be interrupted for several hours after the maneuver. The orbit-only signal-in-space ranging errors (SISREs) of broadcast ephemerides available after the interruption are over two times larger than the errors during normal periods. To shorten the interruption period and improve the ephemeris accuracy, we propose a two-step orbit recovery strategy based on a piecewise linear thrust model. The turning points of the thrust model are firstly determined by comparison of the kinematic orbit with an integrated orbit free from maneuver; afterward, precise orbit determination (POD) is conducted for the maneuvered satellite by estimating satellite orbital and thrust parameters simultaneously. The observations from the IGS Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) network and ultra-rapid products of the German Research Center for Geosciences (GFZ) are used for orbit determination of maneuvered satellites from Sep to Nov 2017. The results show that for the rapidly recovered ephemerides, the average orbit-only SISREs are 1.15 and 1.0 m 1 h after maneuvering for GEO and IGSO respectively, which is comparable to the accuracy of Beidou broadcast ephemerides in normal cases.


2016 ◽  
Vol 3 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Vasyl Kondratiuk ◽  
Еduard Kovalevskiy ◽  
Svitlana Ilnytska

Abstract The problem of space debris utilization is quite relevant nowadays and has a global character. The space industry experts from all over the world are working on the task of removing space debris. This article proposes the method of determining space debris coordinates by means of the airborne equipment of a space service vehicle. The set of airborne equipment includes a global navigation satellite system receiver, an inertial navigation system and a laser radar. To study the accuracy characteristics of the proposed method under different initial conditions a series of simulations was performed. They showed that the accuracy of determining space debris coordinates becomes higher with the reduction of the distance between the debris and space service vehicle. Stringent requirements for the accuracy of determining the orientation of the coordinate frame of the space vehicle are essential for providing the accuracy characteristics of the method.


2020 ◽  
Vol 196 ◽  
pp. 03005
Author(s):  
Vadim Bogdanov ◽  
Valerey Gavrilov ◽  
Sergey Pulinets ◽  
Dimitar Ouzounov

The experience of short-term forecasting of Kamchatka earthquakes based on complex well measurements at the Petropavlovsk-Kamchatsky geody-namic polygon (PGP) shows that, as a rule, the preparation of strong Kamchatka earthquakes is fairly reliable in the medium-term time scale (months or years be-fore the earthquake). However the determination of the stage beginning imme-diately preceding an earthquake (weeks or days before the main event) is a very difficult task. At present time, the solution of this problem is largely associated with the involvement in the preparation of forecast conclusions of data from continuous monitoring of the ionosphere, carried out by ground-based means of vertical radiosonding and measurements of total electronic content (TEC) using the global navigation satellite system GLONASS and GPS. This is due to the fact that significant changes in a number of ionospheric parameters occur mainly 1-5 days before the Kamchatka earthquakes. The results of the compar-ison of the data of daily monitoring of the ionosphere, including information on TEC, with the data integrated downhole measurements showed a rather high correlation of occurrence of anomalies in the ionosphere before strong earth-quakes with changes in the complex parameters in borehole measurements. As one example, the report presents the results of ionospheric and borehole monitoring obtained in the time neighborhood of the strong (MW = 7.5) the earth-quake that occurred on March 25, 2020 in the area of the Northern Kurils. The results show a high correlation between changes in the specific electrical resis-tivity of the Geospace in the area of the PGP with variations in the TEC and the formation of a number of other anomalies in the ionosphere a few days be-fore the earthquake. These results indicate that it is possible to determine fairly reliably the beginning of the final stage of preparation for a strong earthquake. Currently, methods based on atmospheric parameters monitoring are used quite successfully for predictive estimates of the epicenter and magnitude of an earth-quake: the method of chemical potential corrections for measurements at an altitude of ∼ 100 m, as well as data from measurements of outgoing long-wave infrared radiation (OLR) at the level of the upper edge of clouds (heights of 10 -15 km).


2012 ◽  
Vol 2 (3) ◽  
pp. 172-187 ◽  
Author(s):  
J. Reinking ◽  
A. Härting ◽  
L. Bastos

AbstractWith the growing global efforts to estimate the influence of civilization on the climate change it would be desirable to survey sea surface heights (SSH) not only by remote sensing techniques like satellite altimetry or (GNSS) Global Navigation Satellite System reflectometry but also by direct and in-situ measurements in the open ocean. In recent years different groups attempted to determine SSH by ship-based GNSS observations. Due to recent advances in kinematic GNSS (PPP) Precise Point Positioning analysis it is already possible to derive GNSS antenna heights with a quality of a few centimeters. Therefore it is foreseeable that this technique will be used more intensively in the future, with obvious advantages in sea positioning. For the determination of actual SSH from GNSS-derived antenna heights aboard seagoing vessels some essential hydrostatic and hydrodynamic corrections must be considered in addition to ocean dynamics and related corrections. Systematic influences of ship dynamics were intensively analyzed and sophisticated techniques were developed at the Jade University during the last decades to precisely estimate mandatory corrections. In this paper we will describe the required analyses and demonstrate their application by presenting a case study from an experiment on a cruise vessel carried out in March 2011 in the Atlantic Ocean.


2021 ◽  
Vol 873 (1) ◽  
pp. 012044
Author(s):  
I Gumilar ◽  
TP. Sidiq ◽  
I Meilano ◽  
B Bramanto ◽  
G Pambudi

Abstract Gedebage district is presently experiencing rapid and mass infrastructure development and becoming one of the developed districts in Bandung, Indonesia. A football stadium, several luxury housing, the grand mosque of West Java province, and a business center have been built in this district. However, it is well known that the Gedebage district has turned into one of the Bandung districts that suffers from land subsidence phenomena. Since 2000, the Gedebage district has suffered land subsidence at an average rate of 10 cm per year and becoming one of the fastest sinking districts in Bandung. This fast land subsidence phenomenon is suspected of affecting the infrastructure in this district. Therefore, this work aims to capture the current subsidence rate in the Gedebage district using the geodetic approach of the combination of the Global Navigation Satellite System (GNSS) with Interferometric Synthetic Aperture Radar (InSAR) and investigate the impact of land subsidence on infrastructures in Gedebage district. We use GNSS campaign datasets from the years 2016 and 2019. Each GNSS campaign was performed at least 10-12 hours of observations. We also utilize a similar period of 2016 to 2019 for the InSAR datasets. Utilizing both GNSS and InSAR datasets, we can capture the subsidence with the rate reaching 4 -15 cm per year between 2016 and 2019, and it occurs uniformly in this district. The impact of land subsidence occurred in almost all urban areas in the Gedebage district. These impacts include cracks in buildings, bridges and roads, and also tilted buildings.


2020 ◽  
Author(s):  
Dariusz Strugarek ◽  
Krzysztof Sośnica ◽  
Daniel Arnold ◽  
Adrian Jäggi ◽  
Grzegorz Bury ◽  
...  

<p>Numerous active low Earth orbiters (LEOs) and Global Navigation Satellite System (GNSS) satellites, including the Galileo constellation, are equipped with laser retroreflectors used for Satellite Laser Ranging (SLR). Moreover, most of LEOs are equipped with GNSS receivers for precise orbit determination. SLR measurements to LEOs, GNSS, and geodetic satellites vary in terms of the number of registered normal points (NPs) or registered satellite passes. In 2016-2018, SLR measurements to LEOs constituted 81% of all NPs and 59% of all registered satellite passes, whereas 10% of NPs and 30% of satellite passes, respectively, were assigned to GNSS. The remaining SLR measurements were completed by geodetic satellites, including LAGEOS-1/2, and LARES-1.</p><p>In this study, we show that the SLR observations to Galileo, passive geodetic and active LEO satellites together with precise GNSS-based orbits of LEOs and Galileo, can be used for the determination of global geodetic parameters, such as geocenter coordinates (GCC) and Earth rotation parameters (ERPs), i.e. pole coordinates, and length-of-day parameter.</p><p>GCC are typically determined using SLR observations to passive geodetic satellites, such as LAGEOS-1/2. Also, the SLR observations to LAGEOS-1/2 together with GNSS and Very Long Baseline Interferometry data are used for the determination of ERPs. Here, we use SLR observations to Galileo, LAGEOS-1/2, LARES-1, Sentinel-3A, SWARM-A/B/C, TerraSAR-X, Jason-2, GRACE-A/B satellites to investigate whether they can be applied for the reference frame realization and for deriving high-quality global geodetic parameters.</p><p>We present various types of solutions to investigate the best solution set-up. The studied solutions differ in terms of solution lengths, the combination of different sets of satellites and the relative weights for the variance scaling factors of technique and satellite-specific normal equations. We compare our results with the standard LAGEOS-based solutions, the combined EOP-14-C04 products and show the consistency of the results.</p>


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 774
Author(s):  
Osman Orhan ◽  
Talib Oliver-Cabrera ◽  
Shimon Wdowinski ◽  
Sefa Yalvac ◽  
Murat Yakar

The Karapinar basin, located in the Central Anatolian part of Turkey, is subjected to land subsidence and sinkhole activity due to extensive groundwater withdrawal that began in the early 2000s. In this study, we use Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite System (GNSS), and groundwater level data to monitor and better understand the relations between groundwater extraction, land subsidence, and sinkhole formation in the Karapinar basin. The main observations used in the study are InSAR-derived subsidence velocity maps calculated from both Sentinel-1 (2014–2018) and COSMO-SkyMed (2016–2017) SAR data. Our analysis reveals broad areas of subsidence with rates exceeding 70 mm/yr. The InSAR-derived subsidence was compared with GNSS data acquired by a continuously operating GNSS station located in the study area, which show a similar rate of subsidence. The temporal characteristic of both InSAR and GNSS time series indicate a long-term subsidence signal superimposed by seasonal variability, which follows the overall groundwater level changes, with over 80% cross-correlation consistency. Our results also indicate that sinkhole activity is limited to slow subsidence areas, reflecting strong cohesion of near-surface rock layers that resist subsidence but yield to collapse in response to aquifer system deformation induced by groundwater extraction.


Sign in / Sign up

Export Citation Format

Share Document