scholarly journals Cooperative Visual SLAM based on Adaptive Covariance Intersection

2018 ◽  
Vol 2 (3) ◽  
pp. 151 ◽  
Author(s):  
Fethi Denim ◽  
Abdelkrim Nemra ◽  
Kahina Louadj ◽  
Abdelghani Boucheloukh ◽  
Mustapha Hamerlain ◽  
...  

Simultaneous localization and mapping (SLAM) is an essential capability for Unmanned Ground Vehicles (UGVs) travelling in unknown environments where globally accurate position data as GPS is not available. It is an important topic in the autonomous mobile robot research. This paper presents an Adaptive De-centralized Cooperative Vision-based SLAM solution for multiple UGVs, using the Adaptive Covariance Intersection (ACI) supported by a stereo vision sensor. In recent years, SLAM problem has gotten a specific consideration, the most commonly used approaches are the EKF-SLAM algorithm and the FAST-SLAM algorithm. The primary, which requires an accurate process and an observation model, suffers from the linearization problem. The last mentioned is not suitable for real-time implementation. In our work, the Visual SLAM (VSLAM) problem could be solved based on the Smooth Variable Structure Filter (SVSF) is proposed. This new filter is robust and stable to modelling uncertainties making it suitable for UGV localization and mapping problem. This new strategy retains the near optimal performance of the SVSF when applied to an uncertain system, it has the added benefit of presenting a considerable improvement in the robustness of the estimation process. All UGVs will add data features sorted by the ACI that estimate position on the global map. This solution gives, as a result, a large reliable map constructed by a group of UGVs plotted on it. This paper presents a Cooperative SVSF-VSLAM algorithm that contributes to solve the Adaptive Cooperative Vision SLAM problem for multiple UGVs. The algorithm was implemented on three mobile robots Pioneer 3-AT, using stereo vision sensors. Simulation results show eciency and give an advantage to our proposed algorithm, compared to the Cooperative EKF-VSLAM algorithm mainly concerning the noise quality.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yingzhong Tian ◽  
Heru Suwoyo ◽  
Wenbin Wang ◽  
Long Li

The probability-based filtering method has been extensively used for solving the simultaneous localization and mapping (SLAM) problem. Generally, the standard filter utilizes the system model and prior stochastic information to approximate the posterior state. However, in the real-time situation, the noise statistics properties are relatively unknown, and the system is inaccurately modeled. Thus the filter divergence might occur in the integration system. Moreover, the expected accuracy might be challenging to be reached due to the absence of the responsive time-varying of both the process and measurement noise statistic which naturally can enlarge the uncertainty in the continuous system. Consequently, the traditional strategy needs to be improved aiming to provide an ability to estimate those properties. In order to accomplish this issue, the new adaptive filter is proposed in this paper, termed as an adaptive smooth variable structure filter (ASVSF). Sequentially, the improved SVSF is derived and implemented; the process and measurement noise statistics are estimated by utilizing the maximum a posteriori (MAP) creation and the weighted exponent concept, and the covariance correction step is added based on the divergence suppression concept. In this paper the ASVSF is applied to overcome the SLAM problem of an autonomous mobile robot; henceforth it is abbreviated as an ASVSF-SLAM algorithm. It is simulated and compared to the classical algorithm. The simulation results demonstrated that the proposed algorithm has better performance, stability, and effectiveness.


Author(s):  
Tianmiao Wang ◽  
Chaolei Wang ◽  
Jianhong Liang ◽  
Yicheng Zhang

Purpose – The purpose of this paper is to present a Rao–Blackwellized particle filter (RBPF) approach for the visual simultaneous localization and mapping (SLAM) of small unmanned aerial vehicles (UAVs). Design/methodology/approach – Measurements from inertial measurement unit, barometric altimeter and monocular camera are fused to estimate the state of the vehicle while building a feature map. In this SLAM framework, an extra factorization method is proposed to partition the vehicle model into subspaces as the internal and external states. The internal state is estimated by an extended Kalman filter (EKF). A particle filter is employed for the external state estimation and parallel EKFs are for the map management. Findings – Simulation results indicate that the proposed approach is more stable and accurate than other existing marginalized particle filter-based SLAM algorithms. Experiments are also carried out to verify the effectiveness of this SLAM method by comparing with a referential global positioning system/inertial navigation system. Originality/value – The main contribution of this paper is the theoretical derivation and experimental application of the Rao–Blackwellized visual SLAM algorithm with vehicle model partition for small UAVs.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tianji Ma ◽  
Nanyang Bai ◽  
Wentao Shi ◽  
Xi Wu ◽  
Lutao Wang ◽  
...  

In the automatic navigation robot field, robotic autonomous positioning is one of the most difficult challenges. Simultaneous localization and mapping (SLAM) technology can incrementally construct a map of the robot’s moving path in an unknown environment while estimating the position of the robot in the map, providing an effective solution for robots to fully navigate autonomously. The camera can obtain corresponding two-dimensional digital images from the real three-dimensional world. These images contain very rich colour, texture information, and highly recognizable features, which provide indispensable information for robots to understand and recognize the environment based on the ability to autonomously explore the unknown environment. Therefore, more and more researchers use cameras to solve SLAM problems, also known as visual SLAM. Visual SLAM needs to process a large number of image data collected by the camera, which has high performance requirements for computing hardware, and thus, its application on embedded mobile platforms is greatly limited. This paper presents a parallelization method based on embedded hardware equipped with embedded GPU. Use CUDA, a parallel computing platform, to accelerate the visual front-end processing of the visual SLAM algorithm. Extensive experiments are done to verify the effectiveness of the method. The results show that the presented method effectively improves the operating efficiency of the visual SLAM algorithm and ensures the original accuracy of the algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3604 ◽  
Author(s):  
Peixin Liu ◽  
Xianfeng Yuan ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Chuanzheng Liu ◽  
...  

To solve the illumination sensitivity problems of mobile ground equipment, an enhanced visual SLAM algorithm based on the sparse direct method was proposed in this paper. Firstly, the vignette and response functions of the input sequences were optimized based on the photometric formation of the camera. Secondly, the Shi–Tomasi corners of the input sequence were tracked, and optimization equations were established using the pixel tracking of sparse direct visual odometry (VO). Thirdly, the Levenberg–Marquardt (L–M) method was applied to solve the joint optimization equation, and the photometric calibration parameters in the VO were updated to realize the real-time dynamic compensation of the exposure of the input sequences, which reduced the effects of the light variations on SLAM’s (simultaneous localization and mapping) accuracy and robustness. Finally, a Shi–Tomasi corner filtered strategy was designed to reduce the computational complexity of the proposed algorithm, and the loop closure detection was realized based on the oriented FAST and rotated BRIEF (ORB) features. The proposed algorithm was tested using TUM, KITTI, EuRoC, and an actual environment, and the experimental results show that the positioning and mapping performance of the proposed algorithm is promising.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 705
Author(s):  
Yi Zhang ◽  
Fei Huang

Simultaneous Localization and Mapping (SLAM) technology is one of the best methods for fast 3D reconstruction and mapping. However, the accuracy of SLAM is not always high enough, which is currently the subject of much research interest. Panoramic vision can provide us with a wide range of angles of view, many feature points, and rich information. The panoramic multi-view cross-imaging feature can be used to realize instantaneous omnidirectional spatial information acquisition and improve the positioning accuracy of SLAM. In this study, we investigated panoramic visual SLAM positioning technology, including three core research points: (1) the spherical imaging model; (2) spherical image feature extraction and matching methods, including the Spherical Oriented FAST and Rotated BRIEF (SPHORB) and ternary scale-invariant feature transform (SIFT) algorithms; and (3) the panoramic visual SLAM algorithm. The experimental results show that the method of panoramic visual SLAM can improve the robustness and accuracy of a SLAM system.


2013 ◽  
Vol 694-697 ◽  
pp. 1931-1936
Author(s):  
Feng Ping Cao ◽  
Rong Ben Wang ◽  
Liang Xiu Zhang

In order to overcome the accumulated error in traditional localization methods for intelligent vehicle such as dead reckoning and visual odometry, a simultaneous localization and mapping(SLAM) algorithm based on stereo vision was presented in the paper. Firstly, the interrelated elements in the localization method were defined, and the probability model for intelligent vehicle localization was proposed, then the motion and observation model were established, and the detailed implementation of the introduced localization algorithm was given. Finally, an experiment was designed to confirm the effectiveness of the proposed method. Experimental results indicate that the algorithm can realize three-dimensional motion estimation of intelligent vehicle and can improve the positioning precision effectively.


2021 ◽  
Vol 22 (1) ◽  
pp. 269-286
Author(s):  
Heru Suwoyo ◽  
Yingzhong Tian ◽  
Wenbing Wang ◽  
Long Li ◽  
Andi Adriansyah ◽  
...  

ABSTRACT:  The smooth variable structure filter (SVSF) has been considered as the robust estimator. Like other filters, the SVSF needs an accurate system model and known noise statistics to approximate the posterior state. Unfortunately, the system cannot be accurately modeled, and the noise statistic is unknown in the real application. For these reasons, the performance of SVSF might be decreased or even led to divergence. Therefore, the enhancement of SVSF is required. This paper presents an Adaptive SVSF. Initially, SVSF is smoothed. To provide the ability to estimate the noise statistic, ASVSF is then derived based on maximum likelihood estimation (MLE) and expectation-maximization (EM). Additionally, the unbiased noise statistic is also approached. However, its covariance is complicatedly formulated. It might cause a negative definite symmetric matrix. Therefore, it is tuned based on the innovation covariance estimator (ICE). The ASVSF is designed to solve the online problem of Simultaneous Localization and Mapping (SLAM). Henceforth, it is termed as the ASVSF-SLAM algorithm. The proposed algorithm showed better accuracy and stability compared to the conventional algorithm in terms of root mean square error (RMSE) for both Estimated Path Coordinate (EPC) and Estimated Map Coordinate (EMC). ABSTRAK: Penapis struktur bolehubah lembut (SVSF) telah dianggap sebagai penganggar teguh. Seperti penapis lain, SVSF memerlukan model sistem yang tepat dan statistik hingar yang diketahui bagi menganggar keadaan posterior. Malangnya, sistem tidak dapat dimodelkan dengan tepat dan statistik hingar tidak diketahui dalam aplikasi sebenar. Atas sebab-sebab ini, prestasi SVSF mungkin berkurangan, bahkan berbeza. Oleh itu, memperbaharui SVSF adalah perlu. Kajian ini adalah mengenai SVSF Mudah Suai. Pada awalnya, SVSF dilembutkan. Bagi menyediakan keupayaan anggaran statistik hinggar, ASVSF dihasilkan terlebih dahulu berdasarkan anggaran kemungkinan maksimum (MLE) dan maksimum-harapan (EM). Tambahan, statistik hinggar yang tidak berat sebelah juga dibuat. Walau bagaimanapun, rumusan formula kovarians ini adalah kompleks. Ini mungkin menyebabkan matriks simetri menjadi negatif. Oleh itu, ia diselaraskan berdasarkan penganggar kovarians inovasi (ICE). ASVSF dibina bagi menyelesaikan masalah dalam talian Penempatan dan Pemetaan Serentak (SLAM) dalam talian. Oleh itu, ia disebut sebagai algoritma ASVSF-SLAM. Algoritma yang dicadangkan ini menunjukkan ketepatan dan kestabilan yang lebih baik berbanding algoritma konvensional dari segi ralat punca min kuasa dua (RMSE) bagi kedua-dua Koordinat Anggaran Laluan (EPC) dan Anggaran Koordinat Peta (EMC).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


2021 ◽  
Vol 13 (12) ◽  
pp. 2351
Author(s):  
Alessandro Torresani ◽  
Fabio Menna ◽  
Roberto Battisti ◽  
Fabio Remondino

Mobile and handheld mapping systems are becoming widely used nowadays as fast and cost-effective data acquisition systems for 3D reconstruction purposes. While most of the research and commercial systems are based on active sensors, solutions employing only cameras and photogrammetry are attracting more and more interest due to their significantly minor costs, size and power consumption. In this work we propose an ARM-based, low-cost and lightweight stereo vision mobile mapping system based on a Visual Simultaneous Localization And Mapping (V-SLAM) algorithm. The prototype system, named GuPho (Guided Photogrammetric System) also integrates an in-house guidance system which enables optimized image acquisitions, robust management of the cameras and feedback on positioning and acquisition speed. The presented results show the effectiveness of the developed prototype in mapping large scenarios, enabling motion blur prevention, robust camera exposure control and achieving accurate 3D results.


Sign in / Sign up

Export Citation Format

Share Document