scholarly journals Oil Well Testing Using Production Logging Tool in Khurmala field in Kurdistan Region-Iraq

2019 ◽  
Vol 3 (2) ◽  
pp. 41-51
Author(s):  
Maha Hamoudi ◽  
Akram Humoodi ◽  
Bashdar Mohammed

Production logging tools (PLTs) in oil and gas industries are used for obtaining fluid types and measuring fluid rates in the borehole for both production and injection wells and to better understand the well productivity or the well injectivity of the interest zones. Additionally, it can be used to detect well problems, such as early water or gas breakthrough, channeling behind casing or tubing, and water or gas coning. The Khurmala field is a big oil field in the Kurdistan region of Iraq. PLTs have been acquired in many of the Khurmala oil wells, and the log records took into consideration the production technique decisions. In this study, results of the PLT log will be discussed in one of the Khurmala oil wells. Owing to the long history of production of oil or gas wells, many problems have been seen, such as coning either water or gas, formation damage, casing corrosion, and well obstruct. This research will evaluate the production profile across the slotted liner interval of (W1) well in the Khurmala oil field in the Iraq-Kurdistan region and detect possible water entry points, verify the distribution and nature of fluids, and estimate fluid segregation after the shut-in period. This was done by applying PLTs and interpreting the data by using Emeraude software. The performance of each choke size was studied and assessed. It was found that a choke size of 48/64̎gives the best favorable production gas, oil ratio, and profile. Results from the PL survey showed that no water entry was detected across the logged interval. All the water was coming from below a depth of 990 m; most of the hydrocarbons were coming from the slotted interval across 981.8-982.9 m, and the flowing pressure across the logged interval using maximum choke was less than the saturation pressure.

CORROSION ◽  
1961 ◽  
Vol 17 (11) ◽  
pp. 16-30
Author(s):  
F. W. Jessen ◽  
Ricardo J. Molina

Abstract Laboratory and field tests are reported for titanium parts for gas lift valves and down-hole oil well pumps. While titanium performed well in the laboratory tests using aerated fluids, and did well in field tests of gas lift wells, similar trials in wells pumping sour crude oil well showed titanium to be inferior to normally used materials. Authors conclude titanium is suitable for use in gas lift valves and could be competitive to presently used materials at a lower price. They conclude titanium is not suitable for use in oil well pumps, but might perform better if hardened. It also is at a competitive disadvantage to commonly used materials costwise. While titanium is cathodic to materials commonly used in oil wells, no marked corrosion was attributed to this property after exposure of coupon sets in a producing well. Titanium was found resistant to abrasion by sand-laden aerated oil well fluids in laboratory tests. 6.3.15, 8.4.3


2013 ◽  
Vol 726-731 ◽  
pp. 1500-1503
Author(s):  
Xi He ◽  
Wen Wen Liu ◽  
Gui Lai Xu ◽  
Hui Liu ◽  
Min Jing Li ◽  
...  

There are several hundred of abandoned oil wells in Jianghan oil field now. They were mainly started to be used in 70-80`s of last century, and mainly closed around 2000. After closure, the soil around the oil wells left uncultivated because of oil pollution, which caused serious waste of soil resource. In the present paper, 135 soil samples were collected from 15 oil well areas. Salinity, pH, petroleum hydrocarbon, heavy metals and some other elements were analyzed. According to the investigation, the soil of Jianghan oilfield showed high salinity, and tended to alkali. Petroleum hydrocarbon is dotted distribution, and some sites showed extremely high content as 24.67%. Some elements containing some heavy metals in Jianghan oilfield exceeded standard values and control samples, which may also be caused by oil exploitation.


2012 ◽  
Vol 433-440 ◽  
pp. 7443-7446
Author(s):  
Qi Zhi Fang ◽  
Jian Min Zhao ◽  
Yan Peng Sun

The distribution of oil Wells is mainly in the field or by sea, most of the oil Wells are using human inspectors for condition monitoring, the problems of this are low efficiency and lack of real-time monitoring. Nevertheless, the problems can be solved by introducing Beidou satellite data reporting system, with the installation of RTU on each oil Well, the pressure, temperature, beam-pumping unit load and displacement data will be sent to the data monitoring center in the oil field. The monitoring software makes a full use of the LabVIEW’s data flow driven language features and operation control technology, along with the use of serial communication technology to achieve the long-distance data acquisition of the beam-pumping, therefore, not only that operation data of oil wells are gained promptly and having safety under control, but also greatly improve efficiency and reliability of oil wells’ condition monitoring.


2015 ◽  
pp. 45-47
Author(s):  
M. D. Zejnal'-Abidin ◽  
S. K. Sohoshko ◽  
A. V. Sarancha ◽  
N. P. Kocherga

The article describes the features of well test interpretation in horizontal oil wells in the development of oil and gas reservoirs. The results obtained provided a method of estimating the vertical permeability and the anisotropy coefficient according well testing of horizontal oil wells.


2016 ◽  
Vol 63 (5) ◽  
pp. 414-420 ◽  
Author(s):  
Wei Yan ◽  
Yong Xiang ◽  
Wenliang Li ◽  
Jingen Deng

Purpose This paper aims to establish the downhole CO2 partial pressure profile calculating method and then to make an economical oil country tubular goods (OCTG) anti-corrosion design. CO2 partial pressure is the most important parameter to the oil and gas corrosion research for these wells which contain sweet gas of CO2. However, till now, there has not been a recognized method for calculating this important value. Especially in oil well, CO2 partial pressure calculation seems more complicated. Based on Dolton partial pressure law and oil gas separation process, CO2 partial pressure profile calculating method in oil well is proposed. A case study was presented according to the new method, and two kinds of corrosion environment were determined. An experimental research was conducted on N80, 3Cr-L80 and 13Cr-L80 material. Based on the test results, 3Cr-L80 was recommended for downhole tubing. Combined with the field application practice, 3Cr-L80 was proved as a safety and economy anti-corrosion tubing material in this oil field. A proper corrosion parameter (mainly refers to CO2 partial pressure and temperature) can ensure a safety and economy downhole tubing anti-corrosion design. Design/methodology/approach Based on Dolton partial pressure law and oil gas separation process, CO2 partial pressure profile calculating method in oil well is proposed. An experimental research was conducted on N80, 3Cr-L80 and 13Cr-L80 material. A field application practice was used. Findings It is necessary to calculate the CO2 partial pressure properly to ensure a safety and economy downhole tubing (or casing) anti-corrosion design. Originality/value The gas and oil separation theory and corrosion theory are combined together to give a useful method in downhole tubing anti-corrosion design method.


2013 ◽  
Vol 701 ◽  
pp. 440-444
Author(s):  
Gang Liu ◽  
Peng Tao Liu ◽  
Bao Sheng He

Sand production is a serious problem during the exploitation of oil wells, and people put forward the concept of limited sand to alleviate this problem. Oil production with limited sanding is an efficient mod of production. In order to complete limited sand exploitation, improve the productivity of oil wells, a real-time sand monitoring system is needed to monitor the status of wells production. Besides acoustic sand monitoring and erosion-based sand monitoring, a vibration-based sand monitoring system with two installing styles is proposed recently. The paper points out the relationships between sand monitoring signals collected under intrusive and non-intrusive installing styles and sanding parameters, which lays a good foundation for further study and actual sand monitoring in oil field.


2021 ◽  
Author(s):  
Dale Douglas Erickson ◽  
Greg Metcalf

Abstract This paper discusses the development and deployment of a specialized online and offline integrated model to simulate the CO2 (Carbon Dioxide) Injection process. There is a very high level of CO2 in an LNG development and the CO2 must be removed in order to prepare the gas to be processed into LNG. To mitigate the global warming effects of this CO2, a large portion of the CO2 Rich Stream (98% purity) is injected back into a depleted oil field. To reduce costs, carbon steel flowlines are used but this introduces a risk of internal corrosion. The presence of free water increases the internal corrosion risk, and for this reason, a predictive model discussed in this paper is designed to help operations prevent free water dropout in the network in real time. A flow management tool (FMT) is used to monitor the current state of the system and helps look at the impact of future events (startup, shutdowns etc.). The tool models the flow of the CO2 rich stream from the outlet of the compressor trains, through the network pipeline and manifolds and then into the injection wells. System behavior during steady state and transient operation is captured and analyzed to check water content and the balance of trace chemicals along with temperature and pressure throughout the network helping operators estimate corrosion rates and monitor the overall integrity of the system. The system has been running online for 24/7 for 2 years. The model has been able to match events like startup/shutdown, cooldowns and blowdowns. During these events the prediction of temperature/pressure at several locations in the field matches measured data. The model is then able to forecasts events into the future to help operations plan how they will operate the field. The tool uses a specialized thermodynamic model to predict the dropout of water in the near critical region of CO2 mixtures which includes various impurities. The model is designed to model startup and shutdown as the CO2 mixture moves across the phase boundary from liquid to gas or gas to liquid during these operations.


2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Commingle production nodes are standard practice in the industry to combine multiple segments into one. This practice is adopted at the subsurface or surface to reduce costs, elements (e.g. pipes), and space. However, it leads to one problem: determine the rates of the single elements. This problem is recurrently solved in the platform scenario using the back allocation approach, where the total platform flowrate is used to obtain the individual wells’ flowrates. The wells’ flowrates are crucial to monitor, manage and make operational decisions in order to optimize field production. This work combined outflow (well and flowline) simulation, reservoir inflow, algorithms, and an optimization problem to calculate the wells’ flowrates and give a status about the current well state. Wells stated as unsuited indicates either the input data, the well model, or the well is behaving not as expected. The well status is valuable operational information that can be interpreted, for instance, to indicate the need for a new well testing, or as reliability rate for simulations run. The well flowrates are calculated considering three scenarios the probable, minimum and maximum. Real-time data is used as input data and production well test is used to tune and update well model and parameters routinely. The methodology was applied using a representative offshore oil field with 14 producing wells for two-years production time. The back allocation methodology showed robustness in all cases, labeling the wells properly, calculating the flowrates, and honoring the platform flowrate.


Sign in / Sign up

Export Citation Format

Share Document