Research on Oil well Remote Monitor System Based on Beidou Satellite Technology and LabVIEW

2012 ◽  
Vol 433-440 ◽  
pp. 7443-7446
Author(s):  
Qi Zhi Fang ◽  
Jian Min Zhao ◽  
Yan Peng Sun

The distribution of oil Wells is mainly in the field or by sea, most of the oil Wells are using human inspectors for condition monitoring, the problems of this are low efficiency and lack of real-time monitoring. Nevertheless, the problems can be solved by introducing Beidou satellite data reporting system, with the installation of RTU on each oil Well, the pressure, temperature, beam-pumping unit load and displacement data will be sent to the data monitoring center in the oil field. The monitoring software makes a full use of the LabVIEW’s data flow driven language features and operation control technology, along with the use of serial communication technology to achieve the long-distance data acquisition of the beam-pumping, therefore, not only that operation data of oil wells are gained promptly and having safety under control, but also greatly improve efficiency and reliability of oil wells’ condition monitoring.

2019 ◽  
Vol 3 (2) ◽  
pp. 41-51
Author(s):  
Maha Hamoudi ◽  
Akram Humoodi ◽  
Bashdar Mohammed

Production logging tools (PLTs) in oil and gas industries are used for obtaining fluid types and measuring fluid rates in the borehole for both production and injection wells and to better understand the well productivity or the well injectivity of the interest zones. Additionally, it can be used to detect well problems, such as early water or gas breakthrough, channeling behind casing or tubing, and water or gas coning. The Khurmala field is a big oil field in the Kurdistan region of Iraq. PLTs have been acquired in many of the Khurmala oil wells, and the log records took into consideration the production technique decisions. In this study, results of the PLT log will be discussed in one of the Khurmala oil wells. Owing to the long history of production of oil or gas wells, many problems have been seen, such as coning either water or gas, formation damage, casing corrosion, and well obstruct. This research will evaluate the production profile across the slotted liner interval of (W1) well in the Khurmala oil field in the Iraq-Kurdistan region and detect possible water entry points, verify the distribution and nature of fluids, and estimate fluid segregation after the shut-in period. This was done by applying PLTs and interpreting the data by using Emeraude software. The performance of each choke size was studied and assessed. It was found that a choke size of 48/64̎gives the best favorable production gas, oil ratio, and profile. Results from the PL survey showed that no water entry was detected across the logged interval. All the water was coming from below a depth of 990 m; most of the hydrocarbons were coming from the slotted interval across 981.8-982.9 m, and the flowing pressure across the logged interval using maximum choke was less than the saturation pressure.


CORROSION ◽  
1961 ◽  
Vol 17 (11) ◽  
pp. 16-30
Author(s):  
F. W. Jessen ◽  
Ricardo J. Molina

Abstract Laboratory and field tests are reported for titanium parts for gas lift valves and down-hole oil well pumps. While titanium performed well in the laboratory tests using aerated fluids, and did well in field tests of gas lift wells, similar trials in wells pumping sour crude oil well showed titanium to be inferior to normally used materials. Authors conclude titanium is suitable for use in gas lift valves and could be competitive to presently used materials at a lower price. They conclude titanium is not suitable for use in oil well pumps, but might perform better if hardened. It also is at a competitive disadvantage to commonly used materials costwise. While titanium is cathodic to materials commonly used in oil wells, no marked corrosion was attributed to this property after exposure of coupon sets in a producing well. Titanium was found resistant to abrasion by sand-laden aerated oil well fluids in laboratory tests. 6.3.15, 8.4.3


2013 ◽  
Vol 726-731 ◽  
pp. 1500-1503
Author(s):  
Xi He ◽  
Wen Wen Liu ◽  
Gui Lai Xu ◽  
Hui Liu ◽  
Min Jing Li ◽  
...  

There are several hundred of abandoned oil wells in Jianghan oil field now. They were mainly started to be used in 70-80`s of last century, and mainly closed around 2000. After closure, the soil around the oil wells left uncultivated because of oil pollution, which caused serious waste of soil resource. In the present paper, 135 soil samples were collected from 15 oil well areas. Salinity, pH, petroleum hydrocarbon, heavy metals and some other elements were analyzed. According to the investigation, the soil of Jianghan oilfield showed high salinity, and tended to alkali. Petroleum hydrocarbon is dotted distribution, and some sites showed extremely high content as 24.67%. Some elements containing some heavy metals in Jianghan oilfield exceeded standard values and control samples, which may also be caused by oil exploitation.


2016 ◽  
Vol 63 (5) ◽  
pp. 414-420 ◽  
Author(s):  
Wei Yan ◽  
Yong Xiang ◽  
Wenliang Li ◽  
Jingen Deng

Purpose This paper aims to establish the downhole CO2 partial pressure profile calculating method and then to make an economical oil country tubular goods (OCTG) anti-corrosion design. CO2 partial pressure is the most important parameter to the oil and gas corrosion research for these wells which contain sweet gas of CO2. However, till now, there has not been a recognized method for calculating this important value. Especially in oil well, CO2 partial pressure calculation seems more complicated. Based on Dolton partial pressure law and oil gas separation process, CO2 partial pressure profile calculating method in oil well is proposed. A case study was presented according to the new method, and two kinds of corrosion environment were determined. An experimental research was conducted on N80, 3Cr-L80 and 13Cr-L80 material. Based on the test results, 3Cr-L80 was recommended for downhole tubing. Combined with the field application practice, 3Cr-L80 was proved as a safety and economy anti-corrosion tubing material in this oil field. A proper corrosion parameter (mainly refers to CO2 partial pressure and temperature) can ensure a safety and economy downhole tubing anti-corrosion design. Design/methodology/approach Based on Dolton partial pressure law and oil gas separation process, CO2 partial pressure profile calculating method in oil well is proposed. An experimental research was conducted on N80, 3Cr-L80 and 13Cr-L80 material. A field application practice was used. Findings It is necessary to calculate the CO2 partial pressure properly to ensure a safety and economy downhole tubing (or casing) anti-corrosion design. Originality/value The gas and oil separation theory and corrosion theory are combined together to give a useful method in downhole tubing anti-corrosion design method.


2013 ◽  
Vol 701 ◽  
pp. 440-444
Author(s):  
Gang Liu ◽  
Peng Tao Liu ◽  
Bao Sheng He

Sand production is a serious problem during the exploitation of oil wells, and people put forward the concept of limited sand to alleviate this problem. Oil production with limited sanding is an efficient mod of production. In order to complete limited sand exploitation, improve the productivity of oil wells, a real-time sand monitoring system is needed to monitor the status of wells production. Besides acoustic sand monitoring and erosion-based sand monitoring, a vibration-based sand monitoring system with two installing styles is proposed recently. The paper points out the relationships between sand monitoring signals collected under intrusive and non-intrusive installing styles and sanding parameters, which lays a good foundation for further study and actual sand monitoring in oil field.


2021 ◽  
pp. 1-14
Author(s):  
Bin Zhang ◽  
Xianwen Gao ◽  
Xiangyu Li

Summary In this paper, we study the simulation and fault diagnosis of a conventional pumping unit under balanced conditions. As the energy input of sucker-rod pumping (SRP), the motor power contains abundant information about the whole pumping cycle under SRP. It is an important step in oilfield information construction to establish a computer-aided system that is based on motor power diagnosis. Hence, we propose an SRP simulation model for generating motor power. By analyzing the working conditions of six oil wells that contain normal or insufficient liquid supply, gas lock, traveling valve leakage, standing valve leakage, and parting rod, we simulate the motor power of the six wells. In addition, we verify the simulation model using a test well with favorable performance and establish the motor power template set (MPTS) using this simulation model. To allow for computer-aided diagnosis, we propose the use of the area proportion method to extract motor power features. We establish a diagnosis model of oilwell conditions that is based on oblique decision tree and train the diagnosis model using the MPTS. Through the verification of six oil wells in the actual production of the oil field, the diagnosis model shows a favorable response. The test results show that the methods of establishing MPTS and oilwell working-condition diagnosis are feasible.


2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


2021 ◽  
Vol 877 (1) ◽  
pp. 012030
Author(s):  
Maha Razaq Manhi ◽  
Hamid Ali Ahmed Alsultani

Abstract The Mauddud Formation is Iraq’s most significant and widely distributed Lower Cretaceous formation. This Formation has been investigated at a well-23 and a well-6 within Ratawi oil field southern Iraq. In this work, 75 thin sections were produced and examined. The Mauddud Formation was deposited in a variety of environments within the carbonate platform. According to microfacies analysis studying of the Mauddud Formation contains of twelve microfacies, this microfacies Mudstone to wackestone microfacies, bioclastic mudstone to wackestone microfacies, Miliolids wackestone microfacies,Orbitolina wackestone microfacies, Bioclastic wackestone microfacies, Orbitolina packstone microfacies, Peloidal packstone microfacies, Bioclastic packstone microfacies, Peloidal to Bioclastic packstone microfacies, Bioclastic grainstone microfacies, Peloidal grainstone microfacies, Rudstone microfacies. Deep sea, Shallow open marine, Restricted, Rudist Biostrome, Mid – Ramp, and Shoals are the six depositional environments in the Mauddud Formation based on these microfacies.


Author(s):  
V.N. Melikhov ◽  
N.A. Krylov ◽  
I.V. Shevchenko ◽  
V.L. Shuster

Regarding the South Caspian oil and gas province, it is concluded that the Pliocene productivity prevails in the western part of the province, and that the gas and oil prospects of the eastern land side in the Mesozoic are prioritized. A retrospective analytical review of geological and geophysical data and publications on the Mesozoic of Southwestern Turkmenistan was carried out, which showed the low efficiency of the performed seismic and drilling operations in the exploration and evaluation of very complex Mesozoic objects. A massive resumption of state-of-the-art seismic exploration and appraisal drilling in priority areas and facilities performed by leading Russian companies is proposed. For some areas, a new, increased estimate of the projected gas resources is given. An example of modern high-efficiency additional exploration of the East Cheleken, a small Pliocene gas and oil field, which turned this field into a large one in terms of reserves, is given.


Sign in / Sign up

Export Citation Format

Share Document