Przeciwbakteryjne działanie olejku rozmarynowego (Oleum Rosmarini) na bakterie beztlenowe

2018 ◽  
Vol 19 (2) ◽  
Author(s):  
Anna Kędzia ◽  
Andrzej W. Kędzia ◽  
Joanna Wiśniewska

Introduction. Rosmarinus officinalis L. a member of family Lamiaceae is widely found in many countries of North Africa, America and Europa. It grown to 2-3 m high. The plant produced of essential oils. The composition of rosemary oil based on genotype, climate, geography, and method of preparation. The major constituents of the oil are 1-8 cineole, α-pinene, camphene, α-terpineol, borneol, camphor, β-myrcene, geraniol, eugenol, p-cymen, linalool, romarinic acid and caffeic acid. Rosmarinic acid is well adsorbed from gastrointestinal tract and from the skin. The oil is used in medicine as an anti-inflammation, anticancer, analgesic, antidiabetic, antiulcerogenic, hepatoprotective, antirheumatic, antiepileptic, diuretic and anti Alzheimer disease. The extracts and essential oil have antimicrobial activity towards bacteria, fungi, viruses and insects. Aim. The goal of this work was to test the antimicrobial activity of rosmarinic oil on anaerobic bacteria. Material and methods. The bacterial strains were isolated from oral cavity. A total 33 strains of anaerobic bacteria isolated from patients and 6 reference strains were investigated. The susceptibility (MIC) was determined by the two-fold of plate dilution method in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. The rosmarinic oil (Semifarm) was dissolved at first in DMSO and afterwards in distilled water. Concentrations of oil used were 0.06, 0.12, 0.25, 0.5, 1.0 and 2.0 mg/ml. The inoculum containing 106 CFU/per spot was seeded with Steers replicator upon the surface of agar with oil and without the oil (the strains growth control). Incubation the plates was performed in anaerobic conditions in anaerobic jar, at 37°C for 48 hrs. The MIC was defined as the lowest concentrations of rosmarinic oil that completely inhibited the growth of tested anaerobic bacteria. Results. The results indicated that the tested bacteria were high sensitive to the essential oils. The most susceptible from Gram-negative bacteria were the rods from genus of Porphyromonas asaccharolytica, Prevotella levii and Bacteroides uniformis (MIC ≤ 0.06 mg/ml). The strains from genus Prevotella buccalis and Bacteroides vulgatus were less sensitive (MIC = 0.5 mg/ml). Remainded Gram-negative rods were susceptible to the oil in concentrations in range from 0.5 to 1.0 mg/ml. The rosmarinus oil was more effective against the Gram-positive bacteria. The most susceptible from the cocci were strains from the genus of Peptostreptococcus anaerobius and Parvimonas micros (MIC 0.25-≤ 0.06 mg/ml) and from rods Gram-positive rods genus of Actinomyces viscosus and Bifidobacterium breve (MIC 0.12-≤ 0.06 mg/ml). Conclusions. The results indicated that the rosmarinic oil showed high antibacterial activity against all tested anaerobic bacteria. The more susceptible to oil were the Gram-positive bacterial strains than Gram-negative anaerobic rods.

2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Anna Kędzia ◽  
Andrzej W. Kędzia

Introduction. Anise (Pimpinella anisum L.) belong to Apiaceae family. The plant is distributed in China, Iran, Indie and America. The fruits green' lanceoled leaves, white flowers and green-yellow seeds. The fruits are used to produce an essential oils. The anise oil is widely used in folk medicine, food, cosmetic and pharmaceutical industries. The fruits consists of 6-30% volatile oil. Its the major components are trans-anethole, estragol, eugenol, linalool, α-terpineol, cis-anethole, anisaldehyde, coumarins, methylchavikol, scopoletin, umbelliferone, estrols and polyacetylenes. Aim. The aim of this study was to determine the antimicrobial activity of anise oil against anaerobic bacteria isolated from oral cavity and upper respiratory tract. Material and methods. A total 54 strains of anaerobic bacteria and 8 standards strains from genera Porphyromonas, Prevotella, Bacteroides, Parabacteroides, Fusobacterium, Tannerella, Finegoldia, Peptostreptococcus, Actinomyces, Propionibacterium, Bifidobacterium and 8 standards strains Bacteroides fragilis ATCC 25285, Porphyromonas asaccharolytica ATCC 29743, Peptostreptococcus anaerobius ATCC 27337, Fusobacterium nucleatum ATCC 25586, Finegoldia magna ATCC 29328, Parabacteroides distasonis ATCC 8503, Propionibacterium acnes ATCC 11827 and Actinomyces odontolyticus ATCC 17929 were investigated. The susceptibility (MIC) was determined by the two-fold of plate dilution method in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. The inoculum containing 106 CFU/spot was seeded with Steers replicator upon the surface of agar containing testing oil and free oil (the strains growth control). Incubation the plates was performed in anaerobic conditions in anaerobic jars with 10% CO2 , 10% H2 and 80% N2 . The MIC was considered to be the last dilution that did not bacterial colonial growth. Results. The results showed, that the most susceptible to oils from Gram-negative anaerobes were the strains of Tannerella forsythia (MIC 0.5-< 0.12 mg/ml), Fusobacterium necrophorum, Bacteroides vulgatus and Bacteroides uniformis (MIC = 25 mg/ml). The strains from genus of Prevotella bivia and Parabacteroides distasonis were the lowest sensitive. The growth of the strains was inhibited by concentration > 2.0 mg/ml. The anise oil was more active against Gram-positive rods and cocci then Gram-negative anaerobic bacteria. Conclusions. The anise oil was very active against all bacterial strains tested. The most susceptible to oil was the strains from genus Tannerella forsythia, Fusobacteria necrophorum, Bacteroides vulgatus and Bacteroides uniformis. The Gram-positive-rods and cocci was more susceptible to anise oil then anaerobic Gram-negative rods.


2019 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Kędzia ◽  
Elżbieta Hołderna-Kędzia

Introduction. Melissa officinalis L. is a member of family Lamiaceae. The plant a widely cultivated in many countries of Asia (Iran, Turkiestan), North America, Europe and Poland. It growth to 1 m high. Leaves are green with characteristic smell of lemon and flowers are white or pink. The plant produce of essential oil which the components are: neral, geraniol, geranial, β-caryophyllene, tymol, linalol, citronellol, cytronellal, geranyl acetate, α-humulene, germacrane D, n-eikosane, didydrocitronellolacetate, 5-cedranone, β-ocimene Z and β-ocimene E. The oil is used in therapy. It showed antiinflammatory and antymicrobial activity towards bacteria, fungi, viruses and insects. Aim. The aim of this study was to evaluate the activity of melissa oil against anaerobic bacteria. Material and methods. The bacterial strains were isolated from oral cavity. A total 32 strains anaerobes and 8 standards strains were investigated. The melissa oil (Semifarm) was dissolved in DMSO and distilled water to obtained a final concentrations of 2.0, 1.0, 0.5, 0.25, 0.12 and 0.06 mg/ml. The inoculums containing 105 CFU/spot was seeded with Steers replicator upon the surface of agar with or without essential oil (bacterial strains growth control). Incubation was performed in anaerobic conditions in anaerobic jar, in 37°C for 48 hrs. The MIC was defined as the lowest concentrations of melissa oil inhibiting the growth of the tested anaerobes. Results. The results showed, that the melissa oil presented high antibacterial activity against all tested anaerobes. The most susceptible from Gram-positive bacteria were the cocci from the genus of Finegoldia magna, Micromonas micros and Peptostreptococcus anaerobius and Gram-positive rods Actinomyces odontolyticus and Bifidobacterium bivia (MIC < 0.06 mg/ml). The 92% of Gram-positive bacteria was inhibited in concentrations < 0.06-0.25 mg/ml. From Gram-negative rods the most susceptible was the Bacteroides vulgatus (MIC < 0.06 mg/ml). The strains from genus of Prevotella bivia and Prevotella buccalis were the lowest sensitive. The minimal inhibitory concentration for these strains was 1.0 mg/ml. But 47% of this strains was inhibited by concentrations in range < 0.06-0.25 mg/ml. Conclusions. The melissa oil showed high activity against all tested anaerobic bacteria, The Gram-positive bacteria were the most susceptible to tested oil than Gram-negative anaerobic rods.


2018 ◽  
Vol 19 (2) ◽  
Author(s):  
Anna Kędzia ◽  
Andrzej W. Kędzia ◽  
Joanna Wiśniewska ◽  
Marek Ciecierski

Introduction. Zingiber officinale from family Zingiberaceae is known as ginger. Its common names are African Ginger, Cocchin Ginger, Jamaican Ginger, Black Ginger, Gan jiang, Ingwer, Gegibre and Rice Ginger. It was used in traditional Chinese and Ayurvedic medicine to treat headaches, nausea and colds. In Mexican medicine have been used to treat gastrointestinal complaints. It is one of the frequently used spices in many countries of the world. It can be consumed as a fresh or dried to prepared tea, soft drinks and bread. The plant grown to 1 m high. The rhizome contain volatile oil. The major components of ginger are mono- and sesquiterpens, in it zingiberene and zingiberol. Futhermore oil contain borneol, cyneole, citral, camphene, β-phellandrene, zingerone, shogaol, geranyl acetate, geraniol, curcumene, terpineol, limonene, linalool, α-farnesene, neral and 6-gingerol. Research carried out on ginger indicated, that components to have antiinflammatory, antiplateled aggregation, antioxidant, antidiabetic, cholesterol-lowering, blood pressure-lowering and anticancer properties. Aim. The goal of this dates was to test the antimicrobial activity of ginger oil against anaerobes. Material and methods. The anaerobic bacterial strains were isolated from oral cavity. A total 53 strains isolated from patients and 6 reference strains were examined. The members of following genera were tested: Porphyromonas (4 strains), Prevotella (9), Bacteroides (8), Parabacteroides (1), Tannerella (2), Fusobacterium (7) and after 11 strains of Gram-positive cocci and Gram-positive rods and 6 reference strains from genus: Bacteroides fragilis ATCC 25285, Porphyromonas asaccharolytica ATCC 29743, Fusobacterium nucleatum ATCC 25586, Finegoldia magna ATCC 29328, Peptostreptococcus anaerobius ATCC 27337 and Propionibacterium acnes ATCC 11827. Susceptibility (MIC) was determined by the two-fold dilution technique in Brucella agar supplemented with 5% defibrynated sheep blood, menadione and hemin. The inoculum containing 106 CFU/per spot was seeded with Steers replicator upon the surface of agar with ginger oil (Semifarm, Gdańsk) or without the oil (the strains growth control). Concentrations of oil used were 20.0, 10.0, 7.5, 5.0, 2.5 and 1.2 mg/ml. Incubation the plates was performed in anaerobic conditions in anaerobic jar, at 37°C for 48 hrs. The MIC was defined as the lowest concentrations of ginger oil that completely inhibited the growth of tested anaerobes. Results. The results showed, that the most susceptible from Gram-anaerobic bacteria to ginger oil in ranges ≤ 1.26-5.0 mg/ml were the strains from genus of Tannerella forsythia and Bacteroides uniformis. The others of Gram-negative rods were susceptible to oil in ranges 10.0-≥ 20.0 mg/ml. The strains belonging to the genus of Prevotella bivia, Prevotella buccalis and Parabacteroides distasonis were the lowest sensitive to tested oil (MIC ≥ 20.0 mg/ml). The ginger oil was very active against Gram-positive cocci. MIC’s for all the tested strains were to the concentrations from 5.0 to 10.0 mg/ml. The oil characterized similarly of activity in case Gram-positive rods. The date showed, that 82% this strains were susceptible to concentration – 10.0 mg/ml. Conclusions. The results indicated that the ginger oil showed antibacterial activity against all tested anaerobic bacteria. The more susceptible to oil were the Gram-positive cocci and rods then Gram-negative anaerobic bacteria.


2010 ◽  
Vol 5 (9) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Juergen Wanner ◽  
Erich Schmidt ◽  
Stefanie Bail ◽  
Leopold Jirovetz ◽  
Gerhard Buchbauer ◽  
...  

The chemical compositions of selected essential oils from North Africa, especially Morocco, of geranium, wild Moroccan chamomile and rosemary as well as absolutes of rose and geranium were determined using GC/FID and GC/MS. These oils and absolutes were tested concerning their antimicrobial activity against some food spoilage strains obtained from fresh milk and minced meat products, like sausages and pork fillet, in accordance with ISO testing procedures. Gram-positive ( Bacillus Cereus and Staphylococcus aureus) and Gram-negative ( Escherichia coli, Salmonella abony and Pseudomonas aeruginosa) strains were used, as well as the yeast Candida albicans. Using a serial broth dilution method, all samples demonstrated weak antimicrobial activity against the Gram-negative bacteria and the yeast, compared with the activity towards the Gram-positive bacteria.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna Kędzia ◽  
Andrzej W. Kędzia

Introduction. Abies whitebark (Abies sibirica L.) belonging to the family Pinaceae. The tree grown in Mongol, China and Siberian taiga. Produced the pichtae oil, which is obtained by hydrodistillation method. It contain: α-pinene, β-pinene, β-caryophyllene, bornyl acetate, camphene, mircene and cineole. The oil exhibiting expectorant, analgesic, anti-inflammatory, antialergic, liver restorative, adaptogenic and antioxidant properties. It has antimicrobial activity. Aim. The aim of the date was to determine the susceptibility of anaerobic bacteria isolated from patients to pichtae oil. Material and methods. The investigated 49 strains of bacteria isolated from patients from genus Bacteroides (7 strains), Parabacteroides (1), Prevotella (8), Porphyromonas (5), Tannerella (1), Fusobacterium (6), Finegoldia (4), Parvimonas (2), Peptostreptococcus (4), Actinomyces (4), Bifidobacterium (1), Propionibacterium (6), and 10 reference strains. The concentrations the oil were the following: 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 mg/ml. The pichtae oil was added to Brucella agar with 5% defibrynated sheep blood, menadione and hemin. Inoculum containing 106 CFU/ml was seeded with Steers replicator upon the agar with oil or without oil (strains growth control). The incubation was carried out in anaerobic jars containing 10% C02 , 10% H2 and 80% N2 , palladic catalyst and anaerobic indicator, at 37°C for 48 hrs. The MIC was defined as the lowest concentration of the pichtae oil that completely inhibited growth the anaerobic bacteria. Results. The results investigation indicated that from Gram-negative rods Tannerella forsythia (MIC = 5.0 mg/ml), Bacteroides fragilis and Bacteroides uniformis (MIC = 7.5 mg/ml) were the most susceptible to pichtae oil. The growth of Prevotella strains were inhibited by concentrations in ranges 5.0-15.0 mg/ml. The Prevotella bivia (MIC 10.0-15.0 mg/ml) and Prevotella buccalis (MIC = 15.0 mg/ml) were the most resistant. The tested oil was active on account genus of Fusobacterium strains in concentrations 5.0-10.0 mg/ml. The Gram-positive cocci were the more sensitive then rods. The growth was inhibited by concentrations in ranges ≤ 2.5-10.0 mg/ml. The oil was equally effective against Gram-positive rods (MIC ≤ 2.5-10.0 mg/ml). From this bacteria the more susceptible were the strains of Actinomyces (MIC ≤ 2.5-7.5 mg/ml) and the least a rods from genus of Bifidobacterium (MIC = 10.0 mg/ml). The date indicated, that the Gram-positive anaerobes were the more susceptible to pichtae oil than Gram-negative rods. Conclusions. From among the Gram-negative bacteria the more susceptible to pichtae oil were the rods from genus Tannerella forsythia, Bacteroides fragilis and Bacteroides uniformis. Gram-positive anaerobic cocci were the more susceptible then Gram-positive rods. The pichtae oil was the more active towards Gram-positive bacteria then Gram-negative anaerobic rods.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shiara Ramdath ◽  
John Mellem ◽  
Londiwe Simphiwe Mbatha

Health issues involving inadequate treatment of diseases such as cancer and microbial infections continue to be the subject of much ongoing recent research. Biosynthesized silver nanoparticles (AgNPs) were characterized using Transmission Electron Microscopy (TEM), Zeta Sizer, Ultraviolet (UV), and Fourier Transform Infrared (FTIR) spectroscopy. Their antimicrobial activity was evaluated on selected Gram-positive and Gram-negative bacterial strains, using the disc diffusion and broth dilution assays. Cell viability profiles were evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptosis studies on selected human noncancer and cancer cells. The biosynthesized AgNPs were evaluated to be spherical clusters, with sizes between 40 and 70 nm. The absorption peak at 423 nm and the presence of polyphenols confirmed the synthesis and stabilization of these tested AgNPs. The AgNPs showed a good stability of −23.9 ± 1.02 mV. Good antimicrobial activity (6.0–18.0 mm) was seen on all tested bacteria at a minimum inhibitory concentration (MIC) ranging from 5 to 16 μg/ml, with the highest activity seen against Gram-negative Escherichia coli (18 ± 0.5 mm), and the lowest activity was seen against Gram-positive Listeria monocytogenes (6.0 ± 0.4 mm) after treatment with the AgNPs. These NPs showed a concentration-dependent and cell-specific cytotoxicity with low IC50 values (41.7, 56.3, and 63.8 μg/ml). The NPs were well tolerated by tested cells as indicated by a more than 50% cell viability at the high dose tested and low apoptotic indices (<0.2). These findings indicated that these biosynthesized AgNPs showed great potential as effective antibacterial agents and anticancer drug delivery modalities.


2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Anna Kędzia ◽  
Elżbieta Hołderna-Kędzia

Introduction. Cypress (Cupressus sempervirens L.) belongs to the family Cupressaceae. It is evergreen, and grows in Mediterranean region. The Cypress leaves and young branches are utilized to produce the essential oil. Cypress oil contain a number of components, in it α-pinene, Δ3-carene, α-terpinyl acetate, cedrol, α-terpinolene, β-myrcene, limonene, α-terpineolene, terpinen-4-ol, β-pinene, δ-cadinene and sabinene. The oil is used in therapy different diseases. It to have antimicrobial activity. Aim. The aim of the date was evaluation the susceptibility of anaerobic bacteria to Cypress oil. Material and methods. The anaerobic bacteria were isolated from patients. The 62 microorganisms, in it 36 strains of Gram-negative rods, 14 Gram-positive cocci and 12 Gram-positive rods, and 7 reference strains were tested. Susceptibility (MIC) was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrynated sheep blood, menadione and hemin. The Cypress oil was dissolved in DMSO and distilled water to obtain final following concentrations: 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 mg/ml. Inoculum containing 106 CFU per 1 ml was seeded with Steers replicator upon the agar with oil or without the oil (strains growth control). The agar plates was incubated in anaerobic condition in anaerobic jar in 37°C for 48 hrs. The MIC was interpreted as the lowest concentration of Cypress oil inhibiting the growth of tested bacteria. Results. The results indicated that from among Gram-negative rods the most susceptible to Cypress oil was the strains from genus Tannerella forsythia (MIC < 2.5-5.0 mg/ml), Bacteroides uniformis (MIC = 5.0 mg/ml), Bacteroides vulgatus and Porphyromonas asaccharolytica (MIC 5.0-7.5 mg/ml) and Porphyromonas levii (MIC = 7.5 mg/ml). The strains from genera Fusobacterium and of Bacteroides fragilis were the susceptible to 2.5-≥ 20.0 mg/ml. The Cypress oil was least active towards Prevotella and Parabacteroides strains (MIC ≥ 20.0 mg/ml).The tested Gram-positive cocci were more susceptible. The growth of the strains were inhibited by concentrations in ranges ≤ 2.5-7.5 mg/ml. The oil was minor active towards Gram-positive rods (MIC ≤ 2.5-20.0 mg/ml). Among the strains the genus of Actinomyces odontolyticus (MIC = 5.0 mg/ml) and Actinomyces viscosus (MIC ≤ 2.5-7.5 mg/ml) were the most susceptible. The growth of rods of Bifidobacterium breve was inhibited by concentrations 10.0 mg/ml. The data indicates that the Gram-negative rods were the less susceptible than Gram-positive bacteria to cypress oil. Conclusions. Among Gram-negative rods the most susceptible were the strains Tannerella forsythia, Bacteroides uniformis, Bacteroides vulgatus, Porphyromonas asaccharolytica and Porphyromonas levii. The oil was more active against Gram-positive cocci. Gram-positive anaerobic bacteria demonstrate the more susceptible to Cypress oil then Gram-positive rods.


2020 ◽  
Vol 18 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Fatima Benyoucef ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Arrar Zoheir ◽  
Jean Costa ◽  
...  

Background: Antibiotic resistance is today one of the most serious threats to global health, food security and development. Due to the growing number of infections, treatment becomes more difficult, if not impossible, because of the loss of antibiotic efficacy. Objective: In the present investigation, the chemical composition of essential oils of Ammoides verticillata and Satureja candidissima and their synergistic effects on antimicrobial activities were investigated. Methods: The chemical composition of the essential oil was analyzed by Gas Chromatography (GC) and Gas Chromatography-Mass Spectroscopy (GC/MS). The antimicrobial activity of the essential oils was investigated using dilution-agar method against nine bacterial strains three Gram-negative Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Salmonella typhi (ATCC 14028), and six Gram-positive: Staphylococcus aureus (ATCC 43300,) Clostridium sporogenes (ATCC 19404), Bacillus subtilis (ATCC 6633), Enterococcus faecalis (ATCC 7314), Lactobacillus rhamnosus (ATCC 53103) and Bacillus cereus (ATCC 14579). Results: The essential oil of A. verticillata was characterized principally by carvacrol (44,3%), Limonene (19,3%) and p-cymene (19,2%). The constituents identified of S. candidissima essential oil were principally oxygenated monoterpenes represented by pulegone (70,4%). The essential oil of A. verticillata had a good antimicrobial activity against four bacterial strains (Escherichia coli, Salmonella typhi, Lactobacillus rhamnosus and Bacillus cereus) with MIC and MBC values between 0.2-0.4 µl/ml and 0.2-6.2 µl/ml, respectively. While, S. candidissima essential oil had moderate antimicrobial activities against all strains with MIC and MBC values between 1.5-6.2 µl/ml and 6.2-12.5 µl/ml, respectively. The results of antimicrobial activity of essential oils blend presented higher antimicrobial activity against all tested bacteria with MIC and MBC values between 0.3-1.5 µl/ml and 0.4-6.2 µl/ml, respectively. Conclusion: The essential oils blend presented high antimicrobial activity compared to virgin oils. This activity can be due to the association of active compounds such as carvacrol and pulegone. These findings provide a new source of drugs that may help in therapy to lead to the development of a new treatment based on a combination of these essential oils against gram-negative and gram-positive bacteria that continue to pose a threat to public health.


Sign in / Sign up

Export Citation Format

Share Document