scholarly journals Anticancer and Antimicrobial Activity Evaluation of Cowpea-Porous-Starch-Formulated Silver Nanoparticles

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shiara Ramdath ◽  
John Mellem ◽  
Londiwe Simphiwe Mbatha

Health issues involving inadequate treatment of diseases such as cancer and microbial infections continue to be the subject of much ongoing recent research. Biosynthesized silver nanoparticles (AgNPs) were characterized using Transmission Electron Microscopy (TEM), Zeta Sizer, Ultraviolet (UV), and Fourier Transform Infrared (FTIR) spectroscopy. Their antimicrobial activity was evaluated on selected Gram-positive and Gram-negative bacterial strains, using the disc diffusion and broth dilution assays. Cell viability profiles were evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptosis studies on selected human noncancer and cancer cells. The biosynthesized AgNPs were evaluated to be spherical clusters, with sizes between 40 and 70 nm. The absorption peak at 423 nm and the presence of polyphenols confirmed the synthesis and stabilization of these tested AgNPs. The AgNPs showed a good stability of −23.9 ± 1.02 mV. Good antimicrobial activity (6.0–18.0 mm) was seen on all tested bacteria at a minimum inhibitory concentration (MIC) ranging from 5 to 16 μg/ml, with the highest activity seen against Gram-negative Escherichia coli (18 ± 0.5 mm), and the lowest activity was seen against Gram-positive Listeria monocytogenes (6.0 ± 0.4 mm) after treatment with the AgNPs. These NPs showed a concentration-dependent and cell-specific cytotoxicity with low IC50 values (41.7, 56.3, and 63.8 μg/ml). The NPs were well tolerated by tested cells as indicated by a more than 50% cell viability at the high dose tested and low apoptotic indices (<0.2). These findings indicated that these biosynthesized AgNPs showed great potential as effective antibacterial agents and anticancer drug delivery modalities.

2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2021 ◽  
Vol 19 (9) ◽  
pp. 38-45
Author(s):  
Hussein H. Al-Turnachy ◽  
Fadhilk. alibraheemi ◽  
Ahmed Abd Alreda Madhloom ◽  
Zahraa Yosif Motaweq ◽  
Nibras Yahya Abdulla

The present study was included the assessment of the antimicrobial activity of AgNPs synthesized by Punica granatum peel extract against pathogenic bacteria by testing warm aqueous P. granatum peel extract and silver nanoparticles. Punica granatum indicated potency for AgNP extracellular nanobiosynthesis after addition of silver nitrate (AgNO3) 4mM to the extract supernatant, in both concentrations (100mg and 50mg). The biogenic AgNPs showed potency to inhibit both gram-negative and gram-positive bacterial growth. Zons of inhibition in (mm) was lesser in gram-positive than gram-negative bacteria. The resulted phytogenic AgNPs gave higher biological activity than warm aqueous Punica granatum peel extract. The inhibition zone of the phytogenic AgNPs on E. coli reached 17.53, 22.35, and 26.06 mm at (0.1, 0.5, and 1) mg/ml respectively. While inhibition zones of Punica warm aqueous extract reached 5.33, 10.63, and 16.08 mm at the same concentrations. phytogenic AgNPs gave smaller inhibition zones in gram-positive than gram- negative. Cytotoxic activity of the phytogenic AgNPs was assayed in vitro agaist human blood erythrocytes (RBCs), spectroscopic results showed absorbance at 540 nm hemolysis was observed. In general, AgNPs showed least RBCs hemolysis percentage, at 1 mg/ml concentration, hemolysis percentage was (4.50%). This study, concluded that the Punica granatum peel extract has the power of synthses of AgNPs characterized by broad spectrum antimicrobial activity with cyto-toxicity proportional to AgNPs concentration.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


2011 ◽  
Vol 65 (1) ◽  
Author(s):  
Carmen Limban ◽  
Alexandru Missir ◽  
Ileana Chirita ◽  
George Nitulescu ◽  
Miron Caproiu ◽  
...  

AbstractNew acylthiourea derivatives, 2-((4-ethylphenoxy)methyl)-N-(phenylcarbamothioyl)benzamides, were tested by qualitative and quantitative methods on various bacterial and fungal strains and proved to be active at low concentrations against Gram-positive and Gram-negative bacteria as well as fungi. These compounds were prepared by the reaction of 2-((4-ethylphenoxy)methyl)benzoyl isothiocyanate with various primary aromatic amines, and were characterised by melting point and solubility. The structures were identified by elemental analysis, 1H and 13C NMR, and IR spectral data. The level of antimicrobial activity of the new 2-((4-ethylphenoxy)methyl)benzoylthiourea derivatives was dependent on the type, number and position of the substituent on the phenyl group attached to thiourea nitrogen. The iodine and nitro substituents favoured the antimicrobial activity against the Gram-negative bacterial strains, while the highest inhibitory effect against Gram-positive and fungal strains was exhibited by compounds with electron-donating substituents such as the methyl and ethyl groups.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. C. Nagajyothi ◽  
K. D. Lee

The eco-friendly synthesis of nanoparticles through various biological means helps to explore various plants for their ability to synthesize silver nanoparticles (AgNPs). Here we have synthesized AgNPs by using rhizome extract ofDioscorea batatasat as well as room temperature (). AgNPs were characterized under UV-vis spectrophotometer, SEM, FTIR, XRD, and EDX. The antimicrobial activity of AgNPs was evaluated on gram positive (B. substilisandS. aureus), gram negative (E. coli), and fungi (S. cerivisaeandC. albicans). At room temperature,S. cerivisaeandC. albicanswere found to be more susceptible to AgNPs than at .


2013 ◽  
Vol 12 (04) ◽  
pp. 1350024 ◽  
Author(s):  
R. SELVAKUMAR ◽  
S. P. SURIYARAJ ◽  
V. JAYAVIGNESH ◽  
K. SWAMINATHAN

The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dhiraj Dutta ◽  
Swagata Goswami ◽  
Rama Dubey ◽  
Sanjai K. Dwivedi ◽  
Amrit Puzari

Abstract Background Growing microbial resistance towards the existing antimicrobial materials appears as the greatest challenge for the scientific community and development of new antimicrobial materials has become an important research objective. Results In this work, antimicrobial activity of silver-coated hollow poly(methylmethacrylate) microspheres (PMB) having a diameter of 20–80 µm was evaluated against two bacterial strains, Gram-positive Bacillus subtilis (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). The polymeric PMMA microspheres were synthesized by solvent evaporation technique and were further coated with silver (Ag) under microwave irradiation on their outer surface using an electroless plating technique. It was observed that Ag was uniformly coated on the surface of microspheres. Characterization of the coated microspheres was performed using optical microscope (OMS), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), UV–Vis spectroscopy, FTIR spectroscopy and thermogravimetric analysis (TGA) techniques. We have shown that the silver-coated microspheres were potent bactericidal material for water as they are highly active against the tested microorganisms. The results of the antibacterial tests indicated that APMB particles showed enhanced inhibition rate for both Gram-positive and Gram-negative bacteria and also exhibited dose-dependent antibacterial ability. The diameters of zone of inhibition were14.3 ± 0.2 mm against B. subtilis and 15.2 ± 0.9 mm against E. coli at a concentration of 8 mg. At this concentration, total removal of both Bacillus subtilis and Escherichia coli was observed. The results of shake flask technique for a concentration of 8 mg showed no bacterial presence after 24 h in both the cases. In other words, the material acted efficiently in bringing down the bacterial count to zero level for the tested strains. During the experiments, we have also confirmed that use of this material for water disinfection does not cause leaching of silver ion in to the water solution. The material can be successfully regenerated by backwashing with water. Conclusions Considering the cost-effective synthesis, ability to regenerate and very low level of leaching of the material, it can be projected as an advanced material for water disinfection and antimicrobial application.


2021 ◽  
Vol 10 (1) ◽  
pp. 851-859
Author(s):  
Lebogang Mogole ◽  
Wesley Omwoyo ◽  
Elvera Viljoen ◽  
Makwena Moloto

Abstract The resistance of microorganisms towards antibiotics remains a big challenge in medicine. Silver nanoparticles (AgNPs) received attention recently for their characteristic nanosized features and their ability to display antimicrobial activities. This work reports the synthesis of AgNPs using the Citrus sinensis peels extract in their aqueous, mild, and less hazardous conditions. The effect of concentration variation (1%, 2%, and 3%) of the plant extracts on the size and shape of the AgNPs was investigated. The antimicrobial activities were tested against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae. Absorption spectra confirmed the synthesis by the surface Plasmon resonance peaks in the range 400–450 nm for all the AgNPs. FTIR spectra confirmed that Citrus sinensis peels extract acted as both reducing and surface passivating agent for the synthesized AgNPs. TEM revealed spherical AgNPs with average size of 12 nm for 3% concentration as compared to the agglomeration at 1% and 2%. All the AgNPs synthesized using Citrus sinensis peels extracts (1%, 2%, and 3%) exhibited antimicrobial activity against both gram-positive and negative bacteria. These results indicated a simple, fast, and inexpensive synthesis of silver nanoparticles using the Citrus sinensis peels extract that has promising antibacterial activity.


2019 ◽  
Vol 70 (6) ◽  
pp. 1996-1999
Author(s):  
Catalin Araniciu ◽  
Smaranda Dafina Oniga ◽  
Cristina Ioana Stoica ◽  
Mariana Carmen Chifiriuc ◽  
Marcela Popa ◽  
...  

Considering the promising antimicrobial activity of compounds bearing the thiazole or the oxadiazole rings in their structures, we set out to obtain new antimicrobial molecules bearing the 2-(thiazol-5-yl)-1,3,4-oxadiazole schaffold. The structures of the 8 new compounds obtained was confirmed by physicochemical characterization including: 1H-NMR, MS and elemental analysis. Antimicrobial activity was investigated against 5 Gram-positive bacterial strains, 2 Gram-negative bacterial strains and 2 fungal strains. The newly synthesized compounds showed modest antimicrobial activity.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4487
Author(s):  
Simona Rubino ◽  
Rosa Alduina ◽  
Patrizia Cancemi ◽  
Maria Assunta Girasolo ◽  
Vita Di Stefano ◽  
...  

Two mononuclear Pd(II) complexes [PdCl2(pfptp)] (1) and [PdCl2(pfhtp)] (2), with ligands 2-(3-perfluoropropyl-1-methyl-1,2,4-triazole-5yl)-pyridine (pfptp) and 2-(3-perfluoroheptyl-1-methyl-1,2,4-triazole-5yl)-pyridine (pfhtp), were synthesized and structurally characterized. The two complexes showed a bidentate coordination of the ligand occurring through N atom of pyridine ring and N4 atom of 1,2,4-triazole. Both complexes showed antimicrobial activity when tested against both Gram-negative and Gram-positive bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document