scholarly journals IMPLEMENTATION OF CRYPTOGRAPHY AND STEGANOGRAPHY FOR TEXT ON COVER IMAGE USING AES AND F5 ALGORITHM

Author(s):  
Ratna Astuti Nugrahaeni ◽  
R. Rumani M. R. Rumani M. ◽  
Surya Michrandi Nasution

This journal explains about implementation that combine both cryptography and steganography method for texton cover image to increase the security level. Text will be encrypted with AES algorithm, and then it will be embedded to the cover image using F5 algorithm. The implemented AES algorithm has a good performance, with Avalanche Effect value ranges from 0.43 � 0.59. The resulting image, or stego image, has a very similar histogram with the original image, so there is no significant difference between the two of them. However, the file size change about 1.25 � 3.25 times larger than theoriginal image. If noise or disruption is given to stego image, the information can not be extracted.Keywords: cryptography, steganography, AES, F5

Author(s):  
Muhammad Khoiruddin Harahap ◽  
Nurul Khairina

Background: The confidentiality of a message may at times be compromised. Steganography can hide such a message in certain media. Steganographic media such as digital images have many pixels that can accommodate secret messages. However, the length of secret messages may not match with the number of image pixels so the messages cannot be inserted into the digital images.Objective: This research aims to see the dynamics between an image size and a secret message’s length in order to prevent out of range messages entered in an image.Methods: This research will combine the Least Significant Bit (LSB) method and the Stretch technique in hiding secret messages. The LSB method uses the 8th bit to hide secret messages. The Stretch technique dynamically enlarges the image size according to the length of the secret messages. Images will be enlarged horizontally on the rightmost image pixel block until n blocks of image pixels.Results: This study compares an original image size and a stego image size and examines a secret message’s length that can be accommodated by the stego image, as well as the Mean Square Error and Structure Similarity Index. The test is done by comparing the size change of the original image with the stego image from the Stretch results, where each original image tested always changes dynamically according to the increasing number of secret message characters. From the MSE and SSIM test results, the success was only with the first image, while the second image to the fourth image remained erroneous because they also did not have the same resolution.Conclusion:The combination of LSB steganography and the Stretch technique can enlarge an image automatically according to the number of secret messages to be inserted. For further research development, image stretch must not only be done horizontally but also vertically. 


Author(s):  
Marwa Ahmad ◽  
Nameer N. EL-Emam ◽  
Ali F. AL-Azawi

Steganography algorithms have become a significant technique for preventing illegal users from obtaining secret data. In this paper, a deep hiding/extraction algorithm has been improved (IDHEA) to hide a secret message in colour images. The proposed algorithm has been applied to enhance the payload capacity and reduce the time complexity. Modified LSB (MLSB) is based on disseminating secret data randomly on a cover-image and has been proposed to replace a number of bits per byte (Nbpb), up to 4 bits, to increase payload capacity and make it difficult to access the hiding data. The number of levels of the IDHEA algorithm has been specified randomly; each level uses a colour image, and from one level to the next, the image size is expanded, where this algorithm starts with a small size of a cover-image and increases the size of the image gradually or suddenly at the next level, according to an enlargement ratio. Lossless image compression based on the run-length encoding algorithm and Gzip has been applied to enable the size of the data that is hiding at the next level, and data encryption using the Advanced Encryption Standard algorithm (AES) has been introduced at each level to enhance the security level. Thus, the effectiveness of the proposed IDHEA algorithm has been measured at the last level, and the performance of the proposed hiding algorithm has been checked by many statistical and visual measures in terms of the embedding capacity and imperceptibility. Comparisons between the proposed approach and previous work have been implemented; it appears that the intended approach is better than the previously modified LSB algorithms, and it works against visual and statistical attacks with excellent performance achieved by using the detection error (PE). Furthermore, the results confirmed that the stego-image with high imperceptibility has reached even a payload capacity that is large and replaces twelve bits per pixel (12-bpp). Moreover, testing is confirmed in that the proposed algorithm can embed secret data efficiently with better visual quality.


Author(s):  
G.Aparna Et.al

In the proposed paper an approach for image transmission with security and also improvement of the gray-scale (8-bit image) image flexible stenographic system using LSB approach. In this process a secret key of 80 bits is applied while embedding the message into the cover image. To provide high security and also confidentiality of the data a key stego-key is applied. The proposed method the information bits are embedded adaptively into the cover-image pixels. With this method a high embedding capacity in terms of hiding the data is provided and also better imperceptibility is also achieved. The major advantage of this method verifies by the Security method of Digital Signature. It is to be verified whether the attacker has made  a trials to change the Secret information in the  present inside the stego-image which is intended to be kept secret throughout the communication process. In this technique the embedding process to hide the message data present in the transformed spatial domain of the cover image and makes use of a simple Exclusive-OR  operation based on  Security checking method of  verifying the signature digitally by using key size value of 140 bits is used to check the integrity from the stego-image. The confidential data which is embedded can be retrieved from stego-images. The security level is enhanced by using the stego key and by adaptive steganography data inconspicuousness is improved.


2021 ◽  
Vol 24 (1) ◽  
pp. 57-65
Author(s):  
Enas M. Jamel ◽  

Many purposes require communicating audio files between the users using different applications of social media. The security level of these applications is limited; at the same time many audio files are secured and must be accessed by authorized persons only, while, most present works attempt to hide single audio file in certain cover media. In this paper, a new approach of hiding three audio signals with unequal sizes in single color digital image has been proposed using the frequencies transform of this image. In the proposed approach, the Fast Fourier Transform was adopted where each audio signal is embedded in specific region with high frequencies in the frequency spectrum of the cover image to save much more details of the cover image and avoid any doubts that there is any secret information are hidden inside it. The quality of the stego-image and the extracted audio files are evaluated with the standard evaluation metric. The simulation results shown significant results of these metrics and achieve good imperceptibility and high security of the stego-image. The SNR and SPCC values are considered acceptance that means significant in terms quality and similarity of the reconstructed signal.


2019 ◽  
Vol 2019 (1) ◽  
pp. 69-74
Author(s):  
Aldo Barba ◽  
Ivar Farup ◽  
Marius Pedersen

In the paper "Colour-to-Greyscale Image Conversion by Linear Anisotropic Diffusion of Perceptual Colour Metrics", Farup et al. presented an algorithm to convert colour images to greyscale. The algorithm produces greyscale reproductions that preserve detail derived from local colour differences in the original colour image. Such detail is extracted by using linear anisotropic diffusion to build a greyscale reproduction from a gradient of the original image that is in turn calculated using Riemannised colour metrics. The purpose of the current paper is to re-evaluate one of the psychometric experiments for these two methods (CIELAB L* and anisotropic Δ99) by using a flipping method to compare their resulting images instead of the side by side method used in the original evaluation. In addition to testing the two selected algorithms, a third greyscale reproduction was manually created (colour graded) using a colour correction software commonly used to process motion pictures. Results of the psychometric experiment found that when comparing images using the flipping method, there was a statistically significant difference between the anisotropic Δ99 and CIELAB L* conversions that favored the anisotropic method. The comparison between Δ99 conversion and the manually colour graded image also showed a statistically significant difference between them, in this case favoring the colour graded version.


Cryptography ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Bayan Alabdullah ◽  
Natalia Beloff ◽  
Martin White

Data security has become crucial to most enterprise and government applications due to the increasing amount of data generated, collected, and analyzed. Many algorithms have been developed to secure data storage and transmission. However, most existing solutions require multi-round functions to prevent differential and linear attacks. This results in longer execution times and greater memory consumption, which are not suitable for large datasets or delay-sensitive systems. To address these issues, this work proposes a novel algorithm that uses, on one hand, the reflection property of a balanced binary search tree data structure to minimize the overhead, and on the other hand, a dynamic offset to achieve a high security level. The performance and security of the proposed algorithm were compared to Advanced Encryption Standard and Data Encryption Standard symmetric encryption algorithms. The proposed algorithm achieved the lowest running time with comparable memory usage and satisfied the avalanche effect criterion with 50.1%. Furthermore, the randomness of the dynamic offset passed a series of National Institute of Standards and Technology (NIST) statistical tests.


2019 ◽  
Vol 7 (4) ◽  
pp. 254
Author(s):  
Nada E. Tawfiq

Image files can hide text without their size being affected too much. This process called steganography which allows hiding text in images without any suspicions from intruders. This paper addresses an improved LSB substitution algorithm for hiding Kurdish text information written in text file into digital image as steganography technique. The algorithm consists of two main phases, the first phase holds the encryption of the Kurdish text message and the embedded technique while the second phase hold the message extraction followed by decryption to get the original code of each character. The algorithm contains many procedures to enhance this process. Least Significant Bit method is used to hide the Kurdish text, in order to keep the features and characteristics of the original image. Applying the proposed approach shows that it seems work in a best case by hiding and retrieving text from the digital image which is used as a carrier of this text. Delphi 2010 was used to simulate both encrypt-embedded phase and extract-decrypt phase, and the results were obtained with high and security which proved the efficiency of the algorithm, where the hidden Kurdish text didn’t make any distortion or change over the cover image.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1484 ◽  
Author(s):  
Oluwakemi Christiana Abikoye ◽  
Ahmad Dokoro Haruna ◽  
Abdullahi Abubakar ◽  
Noah Oluwatobi Akande ◽  
Emmanuel Oluwatobi Asani

The wide acceptability of Advanced Encryption Standard (AES) as the most efficient of all of the symmetric cryptographic techniques has further opened it up to more attacks. Efforts that were aimed at securing information while using AES is still being undermined by the activities of attackers This has further necessitated the need for researchers to come up with ways of enhancing the strength of AES. This article presents an enhanced AES algorithm that was achieved by modifying its SubBytes and ShiftRows transformations. The SubBytes transformation is modified to be round key dependent, while the ShiftRows transformation is randomized. The rationale behind the modification is to make the two transformations round key dependent, so that a single bit change in the key will produce a significant change in the cipher text. The conventional and modified AES algorithms are both implemented and evaluated in terms avalanche effect and execution time. The modified AES algorithm achieved an avalanche effect of 57.81% as compared to 50.78 recorded with the conventional AES. However, with 16, 32, 64, and 128 plain text bytes, the modified AES recorded an execution time of 0.18, 0.31, 0.46, and 0.59 ms, respectively. This is slightly higher than the results obtained with the conventional AES. Though a slightly higher execution time in milliseconds was recorded with the modified AES, the improved encryption and decryption strength via the avalanche effects measured is a desirable feat.


2020 ◽  
Vol 10 (3) ◽  
pp. 836 ◽  
Author(s):  
Soo-Mok Jung ◽  
Byung-Won On

In this paper, we proposed methods to accurately predict pixel values by effectively using local similarity, curved surface characteristics, and edge characteristics present in an image. Furthermore, to hide more confidential data in a cover image using the prediction image composed of precisely predicted pixel values, we proposed an effective data hiding technique that applied the prediction image to the conventional reversible data hiding technique. Precise prediction of pixel values greatly increases the frequency at the peak point in the histogram of the difference sequence generated using the cover and prediction images. This considerably increases the amount of confidential data that can be hidden in the cover image. The proposed reversible data hiding algorithm (ARDHA) can hide up to 24.5% more confidential data than the existing algorithm. Moreover, it is not possible to determine the presence of hidden confidential data in stego-images, as they possess excellent visual quality. The confidential data can be extracted from the stego-image without loss, and the original cover image can be restored from the stego-image without distortion. Therefore, the proposed algorithm can be effectively used in digital image watermarking, military, and medical applications.


Author(s):  
Kshiramani Naik ◽  
Arup Kumar Pal

In this paper, an image encryption scheme based on reversible integer wavelet transform (IWT) with chaotic logistic map is designed. The proposed cryptosystem is applicable to encipher both the medical and natural images in lossless and lossy manners, respectively. Initially, the original image is transformed with the multilevel of IWT, then the image data set is divided into low sub-band (approximation part) and high sub-bands (detail part). The approximation part gets confused with the chaotic logistic map followed by the bit plane decomposition. Next, the individual bit planes are further diffused with several binary key metrics, generated using a chaotic logistic map. The proposed key schedule derives several large size of binary key metrics from a small size of key. Based on the type of applications, the detail part is considered for lossless/lossy compression. The lossless/lossy compressed detail part is further considered only for confusion process using the logistic map for the sake of enhancing the security level. Finally, the cipher image obtained after inverse IWT is significantly dissimilar than original image. The scheme has been tested on several standard medical and natural images and the experimental results substantiate that a small size of key is enough to protect the content of images completely. The security analysis reveals that the proposed scheme is suitable for protecting the image data effectively.


Sign in / Sign up

Export Citation Format

Share Document