Very-High-Pressure Burning Rates of Aluminized and Nonaluminized AP/HTPB-Composite Propellants

2021 ◽  
pp. 1-8
Author(s):  
Catherine A. M. Dillier ◽  
Erica D. Petersen ◽  
Thomas Sammet ◽  
Eric L. Petersen
Author(s):  
Catherine A. Dillier ◽  
Erica D. Petersen ◽  
Thomas Sammet ◽  
Felix A. Rodriguez ◽  
James C. Thomas ◽  
...  

2002 ◽  
Vol 58 (3) ◽  
pp. 457-462 ◽  
Author(s):  
F. Liebau ◽  
H. Küppers

To compare densities of inorganic high-pressure phases their molal volumes or specific gravities are usually employed, whereas for zeolites and other microporous materials the so-called framework density, FD, is applied. The definition of FD, which refers only to phases with three-dimensional tetrahedron frameworks, is extended to a `generalized framework density' d f, which is independent of the dimensionality of the framework and the coordination number(s) of the framework cations. In this paper the anion packing density, d ap, is introduced as a new quantity which is not only applicable to any inorganic phase but, in contrast to FD and d f, also allows quantitative comparisons to be made for crystalline inorganic phases of any kind. The anion packing density can readily be calculated if the volume and content of the unit cell and the radii of the anions of a phase are known. From d ap values calculated for high-pressure silica polymorphs studied under very high pressure, it is concluded that Shannon–Prewitt effective ionic radii do not sufficiently take into account the compressibility of the anions.


During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


2012 ◽  
Vol 377 ◽  
pp. 012055 ◽  
Author(s):  
Y Mori ◽  
S Yokota ◽  
F Ono
Keyword(s):  

Author(s):  
Rinke J. Wijngaarden ◽  
J. J. Scholtz ◽  
E. N. van Eenige ◽  
R. Griessen

1961 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
John R. Marshall ◽  
Christian J. Lambertsen

In 379 mice subjected to from 1 to 11 atm. of pO2 and 0 to 304 mm Hg of pCO2 for 90 minutes, oxygen was convulsigenic at pressures greater than 3 atm. and lethal at greater than 4 atm. Carbon dioxide in 1 atm. of O2 was not convulsigenic but was lethal at very high tensions. In the presence of O2 at high pressure (OHP) small elevations of CO2 tension shortened the preconvulsive latent period, whereas CO2 tensions greater than 120 mm Hg inhibited convulsions. Survival time in OHP was shortened by the addition of CO2. An interaction between OHP and CO2 effects is suggested by both the preconvulsive latent period and survival time data. The effects of CO2 on OHP and electroshock convulsions are compared and possible reasons for differences are discussed in light of the previously demonstrated general cortical depression and inhibition of convulsions by CO2. The potentiation of OHP convulsions by low CO2 tensions is probably due to effects on brain blood flow. Although death can occur without convulsions there is a tendency for animals susceptible to convulsions to be also susceptible to the lethal properties of OHP with CO2. Submitted on July 28, 1960


Author(s):  
Carlo Maria Spinelli ◽  
Furio Marchersani

International gas market development is towards very long transportation distances (3000–6000 km); the only suitable onshore technology to conjugate economics, large amount of gas conveyed and possibility to exploit remote gas fields appears to be the Very High Pressure (P > 14 MPa), Very High Strength Steel (Steel grade X100 API 5L [1] equivalent) option. Eni Group is going to sponsor a 3 years long project, called TAP (Trasporto gas Alta Pressione) [High Pressure gas Transportation] aimed to demonstrate: • economic evaluation; • technology reliability; • real possibility to build Very High Pressure Pipeline. The project itself is framed into five logical areas: • Evaluation of the applicability of alternative technological solution in extreme enterprise; • Technological innovation, mainly within Eni Group; • FEED (Front End Engineering Development) for strategic route gas pipeline and comparison with LNG option; • Demonstrative construction of a High Strength Steel (X80) pipeline section on Snam Rete Gas Network in Italy; • Demonstrative construction of a Very High Strength Steel (X100 API equivalent) provisioning pilot section pipeline. To achieve this object Eni has involved: • Eni Gas & Power Division as Business Developer; • Snamprogetti as Technology Developer; • Aquater, Enidata, Enitecnologie, Saipem, Snam Rete Gas as specific item expertises; • CSM and Universita` di Bergamo as high qualified partners for lab and full scale testing; • Pipe steel makers and coating producers as fundamental partners to develop new solutions. TAP, within Eni Group, is the final step of a long development research and innovation activity started 8 years ago with two explorative “Long distance pipeline High Grade Steel” projects on Very High Strength Steel performances (strength, toughness, weldability) carried out mainly with the support of Snam, Snamprogetti and Saipem. TAP final goal is to collect, transfer, develop all the possible technological solutions to be ready for building “The pipeline network for Very High Pressure Transportation”.


2008 ◽  
Vol 78 (5) ◽  
pp. 058104 ◽  
Author(s):  
V Schettino ◽  
R Bini ◽  
M Ceppatelli ◽  
M Citroni

Sign in / Sign up

Export Citation Format

Share Document