scholarly journals Gaseous combustion at high pressures. —Part X. The co-volume corrections, maximum temperatures and dissociation of steam and carbon dioxide in explosions

During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.

Author(s):  
Nicholaos G. Demas ◽  
Andreas A. Polycarpou

The refrigeration industry has shown an inclination towards the use of carbon dioxide (CO2) as a refrigerant in some applications. While extensive thermodynamic studies exist, tribological studies with CO2 are limited and tribological testing has further been restricted to low environmental pressures up to 1.38 MPa (200 psi) due to limitations in equipment capabilities. In this work, experiments were performed using an Ultra High Pressure Tribometer (UHPT) that was custom designed and built for tribological testing of compressor contact interfaces at very high environmental pressures up to 13.8 MPa (2000 psi). These tests demonstrate the possibility of testing at very high pressures similar to the internal pressures of CO2 compressors.


1961 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
John R. Marshall ◽  
Christian J. Lambertsen

In 379 mice subjected to from 1 to 11 atm. of pO2 and 0 to 304 mm Hg of pCO2 for 90 minutes, oxygen was convulsigenic at pressures greater than 3 atm. and lethal at greater than 4 atm. Carbon dioxide in 1 atm. of O2 was not convulsigenic but was lethal at very high tensions. In the presence of O2 at high pressure (OHP) small elevations of CO2 tension shortened the preconvulsive latent period, whereas CO2 tensions greater than 120 mm Hg inhibited convulsions. Survival time in OHP was shortened by the addition of CO2. An interaction between OHP and CO2 effects is suggested by both the preconvulsive latent period and survival time data. The effects of CO2 on OHP and electroshock convulsions are compared and possible reasons for differences are discussed in light of the previously demonstrated general cortical depression and inhibition of convulsions by CO2. The potentiation of OHP convulsions by low CO2 tensions is probably due to effects on brain blood flow. Although death can occur without convulsions there is a tendency for animals susceptible to convulsions to be also susceptible to the lethal properties of OHP with CO2. Submitted on July 28, 1960


The so-called high pressure “ CO ” bands—or high pressure carbon bands, as they are better called—were first found by Fowler* in 1910 in tubes containing carbon monoxide at relatively high pressures. The system was described as consisting of some six apparently double-headed bands degraded to the violet, their wave-lengths being approximately at— 6441 6420 } 5897 5878 } 5431 5413 } 5030 5015 } 4679 4663 } 4365 4353 } Å. U. In 1923 the conditions of production of this spectrum were further investigated by Merton and Johnson who obtained the bands with considerable strength by condensed discharges in capillary tubes fitted with carbon electrodes, and containing CO at pressures of 5 mm. and more. It was found that while the high pressure bands and the Swan bands were mingled in the light from the capillary of the tube, the former bands were isolated in bluish jets where the two ends of the capillary merged into the wider parts of the tube. Further observations indicated that the introduction of a little C0 2 destroyed the bands, but that the system re-apppeared after a few minutes, in which time presumably the carbon dioxide had been reduced to monoxide by the carbon electrodes. A reproduction of these bands photographed under low dispersion is given in the above-mentioned paper. No further experimental work appears to have been done on this system, and it has not been correlated with any other band system or assigned any place in the system of electronic levels of the CO molecule. We have therefore made an attempt to photograph the system under high dispersion with a view to fine structure analysis and identification of the molecular emitter. For this purpose large discharge tubes having a bore of about 15 to 20 mm. and a length of 60 or 70 cm. were used. These had at least one of the electrodes made of carbon and were fitted with side bulbs containing caustic potash and phosphorus pentoxide and a palladium regulator. The tubes were filled with carbon monoxide to such a pressure (probably 20-40 mm.) that a condensed discharge could just be forced through by the ¼ kilowatt 15,000 volt transformer used. Some of the tubes had large side flasks attached to them, increasing thereby the volume of gas in the tube, and giving the tubes a life of 4 to 6 hours during which the high pressure bands were emitted strongly. After some such period the pressure fell below the optimum value, and deposits of carbon had accumulated on the walls of the tube. Impurities such as hydrogen, carbon dioxide, and water-vapour were found to inhibit formation of the high pressure bands, and the tube always attained its best condition after running for about an hour (removing meanwhile any little hydrogen present through the regulator). Under these conditions the wide bore is practically filled with light, and presents a remarkable appearance, as of dense pale blue puffs of smoke (showing the high pressure system), threaded by a narrow green ribbon (showing the Swan system). If side tubes having a fair capacity ( e . g ., flasks) are attached to the discharge tube the high pressure glow is capable of diffusion into these. The appearance is suggestive of an afterglow emitter, but if this is its true nature it is of very short duration. Photographs of the H. P. bands were taken in times varying from 4 to 10 hours in the first order of a 21-foot grating. The green band in the neighbourhood of λ 5000 is exceedingly faint and was not attempted. Before considering the results -obtained it will be an advantage to summarise our present knowledge of the Swan spectrum and its emitter, with which it will subsequently be shown that the high pressure carbon system is intimately related.


1982 ◽  
Vol 46 (340) ◽  
pp. 329-336 ◽  
Author(s):  
Jørgen Gutzon Larsen

AbstractScattered dunite and lherzolite nodules occur in one of the youngest basanitoid lavas on Ubekendt Ejland. They have protogranular to porphyroclastic textures. The dunites are composed of olivine (Fo93.2−91.9b), enstatite (En93.4−92.8) low in Al2O3 and CaO, and Cr-spinel (61-13% Cr2O3 and 3–55% Al2O3). A solitary lherzolite module has olivine (Fo94.7–94.1), enstatite (En94.7–94.2), Cr-rich spinel, Ti-phlogopite (11% TiO2), and hyalophane. Petrographic evidence suggests that the two latter minerals have not been introduced by magmatic injection from the host in spite of the refractory nature of the coexisting phases, and metasomatic processes prior to the last deformation are therefore indicated. Partial melting of such mantle material would presumably produce small amounts of alkaline liquids even at very high temperatures. Another lherzolite nodule from a lamprophyre dyke has minerals with lower Mg/(Mg + Fe) ratios which, together with its preserved igneous textures, suggest a high-pressure precipitate. The lowest well-esablished equilibrium temperatures of 700–830°C for both dunites and lherzolites indicate a pressure regime of 12-17 kbar, according to the oceanic geotherm, whereas unrealistically high pressure (20–5 kbar) are suggested using the continental shield geotherm.


2011 ◽  
Vol 94 (1) ◽  
pp. 51-70 ◽  
Author(s):  
Philippe J Eugster ◽  
Davy Guillarme ◽  
Serge Rudaz ◽  
Jean-Luc Veuthey ◽  
Pierre-Alain Carrupt ◽  
...  

Abstract Ultra high pressure liquid chromatography (UHPLC) systems operating at very high pressures and using sub-2 μm packing columns have allowed a remarkable decrease in analysis time and increase in peak capacity, sensitivity, and reproducibility compared to conventional HPLC. This technology has rapidly been widely accepted by the analytical community and is being gradually applied to various fields of plant analysis such as QC, profiling and fingerprinting, dereplication, and metabolomics. For many applications, an important improvement of the overall performances has been reported. In this review, the basic principles of UHPLC are summarized, and practical information on the type of columns used and phase chemistry available is provided. An overview of the latest applications to natural product analysis in complex mixtures is given, and the potential and limitations as well as some new trends in the development of UHPLC are discussed.


2007 ◽  
Vol 30 (8) ◽  
pp. 1158-1166 ◽  
Author(s):  
Robert Plumb ◽  
Jeff R. Mazzeo ◽  
Eric S. Grumbach ◽  
Paul Rainville ◽  
Michael Jones ◽  
...  

1977 ◽  
Vol 15 (8) ◽  
pp. 461-470 ◽  
Author(s):  
Francis P. Bundy

2016 ◽  
Vol 30 (31) ◽  
pp. 1650228 ◽  
Author(s):  
M. A. Ali ◽  
A. K. M. A. Islam ◽  
N. Jahan ◽  
S. Karimunnesa

This paper reports the first-principles study of SnO under high pressure within the generalized gradient approximation (GGA). We have calculated the structural, elastic, electronic and optical properties of SnO. The elastic properties such as the elastic constants [Formula: see text], bulk modulus, shear modulus, Young’s modulus, anisotropic factor, Pugh’s ratio and Poisson’s ratio are calculated and analyzed. Mechanical stability of SnO at all pressures is confirmed using the Born’s stability conditions in terms of [Formula: see text]. It is also found that SnO exhibits very high anisotropy. The energy band structure and density of states are also calculated and analyzed. The results show the semiconducting and metallic properties at zero and high pressures, respectively. Furthermore, the optical properties are also calculated. All the results are compared with those of SnO where available but most of the results at high pressure are not compared due to the unavailability of results.


The elasticity of vapours, in contact with the liquids from which they are produced under high pressures in high temperatures, is known to increase in a higher ratio than the arithmetical one of the temperature; but the exact law is not determined, and the loss of latent heat in compression, and the re-absorption in expansion, renders the advantage of steam under great pressure and at very high temperatures doubtful in an economical view. No such doubt, however, exists in regard to those fluids which require very great compression for their existence, and where common temperatures are sufficient to produce an immense elastic force. Thus sulphuretted hydrogen, which condenses into a liquid under a pressure of 14 atmospheres at 3°, had its elastic force increased so as to equal a pressure of 17 atmospheres by raising its temperature to 47°. Liquid muriatic acid at 3° exerted an elastic force equal to the pressure of 20 atmospheres, at 25° = 25 atmospheres, and at 51° = 45 atmospheres. After some experimental illustrations of the expansibility of the vapour of sulphuret of carbon at different temperatures, the author adverts to the possible application of the difficultly compressible gases, as mechanical agents, and to their power of producing cold by the rapidity of their evaporation.


Sign in / Sign up

Export Citation Format

Share Document