scholarly journals Effects of Propulsion System Operation on Military Aircraft Survivability

2019 ◽  
Vol 56 (6) ◽  
pp. 2131-2143
Author(s):  
Aristeidis Antonakis ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis
Author(s):  
Yu Zhao ◽  
Shijie Zheng

Aircraft infrared signature is one of the most important properties for the military aircraft survivability. In terms of military aircraft, the exhaust system is the most significant infrared radiation source. The exhaust system accounts for more than 90% of the aircraft infrared radiation, and that the exhaust nozzle contributes the most significant infrared radiation of the whole radiation energy provided by the exhaust system from the rear aspect. Low detectionable feature for military aircraft has attracted more importance to promote aircraft survivability via reducing infrared signature. The alteration of nozzle exit area affects an aircraft engine performance; meanwhile, it severely influences the engine infrared signature radiation from the rear side. The present paper is mainly focused on searching an appropriate group of nozzle exit diameter and throat to exit diameter ratio, which can reduce infrared signature radiation while cutting down the loss of thrust. Hence, objectives involve two aspects: one is minimum infrared signature level, and the other is minimum thrust loss. The multi-objective evolutionary algorithm based on decomposition has been employed to solve this bi-objective optimization problem. The optimization results illustrate that dimension selection range and throat to exit diameter ratio exert more important effect on the thrust loss and infrared signature level. Furthermore, the thrust plays significant role for deciding nozzle exit diameter and throat diameter.


Author(s):  
J E Perrin

Manned flight simulation plays a key role in the design and development of modern aircraft systems where pilot interaction is an important consideration. Examples of the systems simulated during an aircraft project include the flight control system, the head-up display, the weapons system and the warnings system. Flight simulation allows the pilot to assess the system operation at an early stage in the design process, and modifications can be quickly implemented so that optimum system operation can be finalized. At British Aerospace (Military Aircraft Division), Warton, three differently configured simulators are currently utilized in the evaluation of aircraft systems.


2004 ◽  
Vol 108 (1087) ◽  
pp. 453-464 ◽  
Author(s):  
M. Pywell

Abstract Military aircraft, by definition, need to survive the onslaught of opposing forces to successfully complete their mission. From an aircraft perspective, the electromagnetic (EM) environment can be an enabler, via the use of navigation aids, radar, radio communications etc. – in fact mission success depends on its successful use. However, this environment is also potentially a disabler, as threat weapon systems and the environment itself can harm or destroy the aircraft. This paper discusses risks and hazards thus posed to aircraft survivability, partitioned into two classes – ‘direct’ and ‘indirect’ EM threats. ‘Direct’ threats are those that occur as a result of direct coupling of EM energy to the airframe and systems within, e.g. lightning strike and directed energy weapons. ‘Indirect’ threats are those that utilise EM sensors to detect, track and target the aircraft, e.g. radar-guided surface-to-air missiles. Airframe intrinsic mechanical vulnerability is also an important part of survivability, although not addressed in this EM-related paper. It is shown that risk and hazard can be minimised by gaining a thorough understanding of operational scenarios, developing holistic system-of-systems solutions to military requirements, and using best practice design and development techniques.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1357
Author(s):  
Mariusz Giernalczyk ◽  
Piotr Kaminski

This paper is an attempt to evaluate the effectiveness of the ship’s hull air lubrication system in order to reduce the drag leading to fuel consumption reduction by ships. The available papers and reports were analyzed, in which records of the operation parameters of the propulsion system of ships equipped with this system were presented. These reports clearly show the advantages of using air lubrication system. On the basis of collected operating parameters of the propulsion system the authors performed analysis of operation effectiveness of the Air Lubrication System on the modern passenger ship was. The results of this analysis do not allow for a clearly positive opinion about its effectiveness. Additionally, the conditions that should be met for the system to be more effective and to significantly increase the propulsion efficiency were indicated.


1995 ◽  
Vol 32 (6) ◽  
pp. 951-956 ◽  
Author(s):  
M. D. Ardema ◽  
J. V. Bowles ◽  
T. Whittaker

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document