scholarly journals Simulations of Unsteady Three-Dimensional Hypersonic Double-Wedge Flow Experiments

AIAA Journal ◽  
2020 ◽  
Vol 58 (9) ◽  
pp. 4055-4067
Author(s):  
John D. Reinert ◽  
Graham V. Candler ◽  
Jeffrey R. Komives
2001 ◽  
Vol 356 (1) ◽  
pp. 217-222 ◽  
Author(s):  
Ricardo FRANCO ◽  
Alice S. PEREIRA ◽  
Pedro TAVARES ◽  
Arianna MANGRAVITA ◽  
Michael J. BARBER ◽  
...  

Ferrochelatase (EC 4.99.1.1) is the terminal enzyme of the haem biosynthetic pathway and catalyses iron chelation into the protoporphyrin IX ring. Glutamate-287 (E287) of murine mature ferrochelatase is a conserved residue in all known sequences of ferrochelatase, is present at the active site of the enzyme, as inferred from the Bacillus subtilis ferrochelatase three-dimensional structure, and is critical for enzyme activity. Substitution of E287 with either glutamine (Q) or alanine (A) yielded variants with lower enzymic activity than that of the wild-type ferrochelatase and with different absorption spectra from the wild-type enzyme. In contrast to the wild-type enzyme, the absorption spectra of the variants indicate that these enzymes, as purified, contain protoporphyrin IX. Identification and quantification of the porphyrin bound to the E287-directed variants indicate that approx. 80% of the total porphyrin corresponds to protoporphyrin IX. Significantly, rapid stopped-flow experiments of the E287A and E287Q variants demonstrate that reaction with Zn2+ results in the formation of bound Zn-protoporphyrin IX, indicating that the endogenously bound protoporphyrin IX can be used as a substrate. Taken together, these findings suggest that the structural strain imposed by ferrochelatase on the porphyrin substrate as a critical step in the enzyme catalytic mechanism is also accomplished by the E287A and E287Q variants, but without the release of the product. Thus E287 in murine ferrochelatase appears to be critical for the catalytic process by controlling the release of the product.


2006 ◽  
Author(s):  
Khaled Alhussan

In this paper some characteristics of non-steady, compressible, flow are explored, including compression and expansion wave interactions and creation. The work to be presented herein is a Computational Fluid Dynamics investigation of the complex fluid phenomena that occur inside three-dimensional region, specifically with regard to the structure of the oblique shock waves, the reflected shock waves and the interactions of the shock waves. The flow is so complex that there exist oblique shock waves, expansion fans, slip surfaces, and shock wave interactions and reflections. The flow is non-steady, turbulent, viscous, compressible, and high-speed supersonic. The work to be presented herein is a Computational Fluid Dynamics analysis of flow over a 15-degree angle double wedge for a compressible air, with spin angle of 10-degree and Mach number of 2.5. The problem to be solved involves formation of shock waves, expansion fans and slip surfaces, so that the general characteristics of supersonic flow are explored through this problem. Shock waves and slip surfaces are discontinuities in fluid mechanics problems. It is essential to evaluate the ability of numerical technique that can solve problems in which shocks and contact surfaces occur. In particular it is necessary to understand the details of developing a mesh that will allow resolution of these discontinuities. Results including contour plots of pressure, temperature, and Mach number will show that CFD is capable of predicting accurate results and is also able to capture the discontinuities in the flow, e.g., the oblique shock waves and the slip surfaces. Through this computational analysis, a better interpretation of the physical phenomenon of the three-dimensional shock waves interaction and reflection can be achieved.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Boštjan Končar ◽  
Borut Mavko

A three-dimensional two-fluid code Neptune_CFD has been validated against the Arizona State University (ASU) and DEBORA boiling flow experiments. Two-phase flow processes in the subcooled flow boiling regime have been studied on ASU experiments. Within this scope a new wall function has been implemented in the Neptune_CFD code aiming to improve the prediction of flow parameters in the near-wall region. The capability of the code to predict the boiling flow regime close to critical heat flux (CHF) conditions has been verified on selected DEBORA experiments. To predict the onset of CHF regime, a simplified model based on the near-wall values of gas volume fraction was used. The results have shown that the code is able to predict the wall temperature increase and the sharp void fraction peak near the heated wall, which are characteristic phenomena for CHF conditions.


1997 ◽  
Vol 119 (1) ◽  
pp. 20-26 ◽  
Author(s):  
J. S. Kapat ◽  
A. K. Agrawal ◽  
T. Yang

This paper presents an investigation of extracting air from the compressor discharge of a heavy-frame gas turbine. The study aimed to verify results of an approximate analysis: whether extracting air from the turbine wrapper would create unacceptable nonuniformity in the flow field inside the compressor discharge casing. A combined experimental and computational approach was undertaken. Cold flow experiments were conducted in an approximately one-third scale model of a heavy-frame gas turbine; a closely approximated three-dimensional computational fluid dynamic analysis was also performed. This study substantiated the earlier prediction that extracting air from the turbine wrapper would be undesirable, although this method of air extraction is simple to retrofit. Prediffuser inlet is suggested as an alternate location for extracting air. The results show that not only was the problem of flow nonuniformity alleviated with this alternate scheme, but the frictional power loss in the compressor discharge casing was also reduced by a factor of two.


Author(s):  
Evan C. Lemley ◽  
Willy L. Duffle ◽  
Jesse K. Haubrich ◽  
Andrew W. Henderson

Laminar flow is increasingly important area of study as it dominates microscale and milliscale applications in devices such as microvalves, pumps, and turbines and in biomedical applications such as stents and biological flows. Studies of pressure losses in junctions have mostly been focused on turbulent flow conditions that exist in larger scale piping systems. There is a need for laminar flow studies of energy losses in junctions so that engineers can better predict, design, and analyze flow in microscale and other small scale systems. Unlike in the turbulent regime, Reynolds number plays a dominant role in energy losses for laminar flow, so new studies should document the effects of Reynolds number. This paper documents laminar flow experiments in a milliscale junction. This work builds on previous experience of the authors in computational fluids dynamics simulations of junctions. The planar junction under study consists of a circular tubes with two outlets and one inlet. A general technique has been developed to produce computer and physical models of junctions in which the inlet tube size is set, but the outlets are allowed to vary in size and angle relative to the inlet tube. A generalized algorithm has been implemented to create three-dimensional models of the junctions for both computational and experimental studies. The junction test sections for experiments are milled from cast acrylic in two pieces to match three-dimensional computer models. The test sections are placed in a system that provides steady-state flow of water to test sections and has been designed to measure pressure losses and flow rates through the test section.


AIAA Journal ◽  
1964 ◽  
Vol 2 (8) ◽  
pp. 1383-1388 ◽  
Author(s):  
NORMAN D. MALMUTH
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document