Determination of temperature distributions by CARS-thermometry in a planar solid fuel ramjet combustion chamber

1998 ◽  
Author(s):  
W. Clauss ◽  
K. Vereschagin ◽  
H. Ciezki
2017 ◽  
Vol 17 ◽  
pp. 245-252
Author(s):  
V. V. Somov

In carrying out an investigation into the explosion, among others, the investigative version of the use of a single-use reactive grenade launcher is being considered. The most common for criminal explosions are applied grenade launchers RPG-18, RPG-22, RPG-26. Their use is due to a number of such properties as small size and weight, which makes it possible to transfer them covertly, the range of the shot significantly exceeding the range of the hand grenade throw, the high detonating effect of the rocket grenade explosion. The single-use rocket launchers are generally of the same design. Their differences are in the features of the components construction and dimensional characteristics, which are given in the article. On the basis of expert practice, details ofgrenade launchers that remain at the site of the explosion and have the least damage are determined. These details are the objects of investigation of the explosion technical expertise. These objects include launchers of grenade launchers and rocket parts ofjet grenades. The design features of the launchers, their dimensional characteristics and marking symbols make it possible to determine their belonging to a specific type of jet grenade launchers. Missile parts of jet grenades differ in the form of the combustion chamber of the jet engine, nozzle, in the size ofthe outlet section of the nozzle, in the form and size of the stabilizerfeathers. To determine the belonging of the rocket part of the grenade to a specific type ofjet grenade launcher, it’s necessary to establish a set of structural features and dimensional characteristics. At considerable damage of the combustion chamber of the jet engine, as a rule, the nozzle block remains intact that allows to define diameter of critical section of a nozzle, and on it to establish type of the used single-use grenade launcher.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 190
Author(s):  
Francesco Barato

Ablative-cooled hybrid rockets could potentially combine a similar versatility of a liquid propulsion system with a much simplified architecture. These characteristics make this kind of propulsion attractive, among others, for applications such as satellites and upper stages. In this paper, the use of hybrid rockets for those situations is reviewed. It is shown that, for a competitive implementation, several challenges need to be addressed, which are not the general ones often discussed in the hybrid literature. In particular, the optimal thrust to burning time ratio, which is often relatively low in liquid engines, has a deep impact on the grain geometry, that, in turn, must comply some constrains. The regression rate sometime needs to be tailored in order to avoid unreasonable grain shapes, with the consequence that the dimensional trends start to follow some sort of counter-intuitive behavior. The length to diameter ratio of the hybrid combustion chamber imposes some packaging issues in order to compact the whole propulsion system. Finally, the heat soak-back during long off phases between multiple burns could compromise the integrity of the case and of the solid fuel. Therefore, if the advantages of hybrid propulsion are to be exploited, the aspects mentioned in this paper shall be carefully considered and properly faced.


Author(s):  
Kristen Bishop ◽  
William Allan

The effects of fuel nozzle condition on the temperature distributions experienced by the nozzle guide vanes have been investigated using an optical patternator. Average spray cone angle, symmetry, and fuel streaks were quantified. An ambient pressure and temperature combustion chamber test rig was used to capture exit temperature distributions and to determine the pattern factor. The rig tests matched representative engine operating conditions by matching Mach number, equivalence ratio, and fuel droplet size. It was observed that very small deviations (± 10° in spray cone angle) from a nominal distribution in the fuel nozzle spray pattern correlated to increases in pattern factor, apparently due to a degradation of mixing processes, which created larger regions of very high temperature core flow and smaller regions of cooler temperatures within the combustion chamber exit plane. The spray cone angle had the most measureable influence while the effects of spray roundness and streak intensity had slightly less influence. Comparisons were made with published studies conducted on the combustion chamber geometry, and recommendations were made for fuel nozzle inspections.


2020 ◽  
Vol 36 (6) ◽  
pp. 933-941
Author(s):  
A. M. Tahsini

ABSTRACTThe performance of the solid fuel ramjet is accurately predicted using full part simulation of this propulsion system, where the flow fields of the intake, combustion chamber, and the nozzle are numerically studied all together. The conjugate heat transfer is considered between the solid phase and the gas phase to directly compute the regression rate of the fuel. The finite volume solver of the compressible turbulent reacting flow is utilized to study the axisymmetric three dimensional flow fields, and two blocks are used to discretize the computational domain. It is shown that the combustion chamber's pressure is changed due to the fuel flow rate's increment which must be taken into account in predictions. The results demonstrate that omitting the pressure dependence of the regression rate and also the effect of the combustor's inlet profile on the regression rate, which specially exists when simulating the combustion chamber individually, under-predicts the solid fuel burning rate when the regression rate augmentation technique is applied to improve the performance of the solid fuel ramjets. It is also illustrated that using the inlet swirl to increase the regression rate of the solid fuel augments considerably the thrust level of the considered SFRJ, while the predictions without considering all parts of the ramjet is not accurate.


2013 ◽  
Vol 634-638 ◽  
pp. 857-863
Author(s):  
Ya Ping Mo ◽  
De Qing Zhu ◽  
Jun Li

In this paper, we use the research methods of sintering cup.On the basis of the determination of solid fuel particle size composition and the distribution in the mixture. During the sintering process, respectively, 5min, 10min, 15min, 20min interrupt the test, by dectecting the distribution of solid fuel in the mixture to study the migration phenomenon of solid fuel during the sintering process. The results showed that: during the sintering process, the main migration of the fuel is the migration of fine particles, including the fuel migration of 0.25-0.5mm grain size, part of the 0.5-1mm grain size and a small amount of-0.25mm grain size,but most of the fuel migrated will be re-adsorbed, about 0.11% of the fuel with the air flow through the material layer, the migration of fuel to ease the state of segregation in the vertical direction along the material layer, so that cause actual participation in the combustion of the fuel content in line along the height direction of the material layer.


Sign in / Sign up

Export Citation Format

Share Document