Atmospheric considerations for uninhabited aerial vehicle (UAV) flight test planning

Author(s):  
Edward Teets, Jr. ◽  
Casey Donohue ◽  
Ken Underwood ◽  
Jeffrey Bauer
2015 ◽  
Vol 1115 ◽  
pp. 450-453 ◽  
Author(s):  
Moumen Idres ◽  
Burhani Makame ◽  
Bala Nabil Ahmad ◽  
Saleh Naji ◽  
Ahmad Safiuddin

Unmanned Aerial Vehicle (UAV) is becoming increasingly popular because it can perform variety of functions. These functions include surveillance, reconnaissance, monitoring, data collection and rescue operation. The purpose of this work is to design, fabricate and fly a low weight, low cost, small size UAV for a surveillance mission. The design is carried out based on Advanced Aircraft Analysis (AAA) software. The design process starts with the design specifications for a typical surveillance mission. Aircraft weight, wing loading and power loading were estimated in performance sizing process. Geometry was estimated using preliminary sizing. Aerodynamics of the aircraft was determined, which enabled the performance and stability to be analysed. If the desired performance is not achieved, the sizing is readjusted until a final design is reached. The aircraft was manufactured using foam, carbon rods, and fibreglass. The aircraft successfully flew at the first trial flight. This was followed by a successful flight with aerial photography. Keywords: UAV, design process, fabrication process, composite structure, flight test


2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


Author(s):  
Daniel R. McArthur ◽  
Arindam B. Chowdhury ◽  
David J. Cappelleri

This paper presents the design of the Interacting-BoomCopter (I-BoomCopter) unmanned aerial vehicle (UAV) for mounting a remote sensor package on a vertical surface. Critical to the design is the novel, custom, light-weight passive end-effector. The end-effector has a forward-facing sonar sensor and in-line force sensor to enable autonomous sensor mounting tasks. The I-BoomCopter’s front boom is equipped with a horizontally-mounted propeller which can provide forward and reverse thrust with zero roll and pitch angles. The design and modeling of the updated I-BoomCopter platform is presented along with prototype flight test results. A teleoperated wireless camera sensor mounting task examines the updated platform’s suitability for mounting remote sensor packages.


Author(s):  
Sungwook Cho ◽  
David Hyunchul Shim

This paper proposes a Gaussian process based visual servoing framework for an aerial parallel manipulator. Our aerial parallel manipulator utilizes the on-board eye-in-hand vision sensor system attached on the end-effector of three-degrees-of-freedom parallel manipulator. There are three major advantages: small, light in weight, and linearity with respect to the host vehicle rather than the serial manipulator, but it has a critical drawback that its workspace is too small to perform the mission itself during the hovering. In order to overcome the limited workspace problem and perform the mission more actively, proposed visual servoing framework is proposed to generate relative body velocity commands of the host vehicle by using the interpolated and extrapolated feature path between the initial and desired features to fed into the underactuated aerial parallel manipulator. It can generate not only numerical stable but also feasible control input. Furthermore, it can overcome the weakness of the traditional image-based visual servoing such as singularities, uncertainties, and local minimums during calculating image Jacobian under the large disparity environment between the target and the unmanned aerial vehicle. As a result of the proposed contribution, we show that our contribution is reliable to perform the picking-and-replacement autonomously, and it shows that it can be applied in the large displacement environments throughout the flight test.


Author(s):  
Farrukh Mazhar ◽  
Mohammad A Choudhry ◽  
Muhammad Shehryar

Autonomous flight of an aerial vehicle requires a sufficiently accurate mathematical model, which can capture system dynamics in the presence of external disturbances. Artificial neural network is known for ideal in capturing systems behaviour, where little knowledge about vehicle dynamics is available. In this paper, we explored this potential of artificial neural network for characterizing nonlinear dynamics of an unmanned airship. The flight experimentation data for an outdoor experimental airship are acquired through a series of pre-determined flight tests. The experimental data are subjected to a class of dynamic recurrent neural network model dubbed as nonlinear auto-regressive model with exogenous inputs for training. Sufficiently trained neural network model captured and demonstrated the longitudinal dynamics of the airship satisfactorily. We also demonstrated the usefulness of proposed technique for Lotte airship, wherein the performance of proposed model is validated and analysed for the Lotte airship flight test data.


2018 ◽  
Vol 159 ◽  
pp. 02045
Author(s):  
Mochammad Ariyanto ◽  
Joga D. Setiawan ◽  
Teguh Prabowo ◽  
Ismoyo Haryanto ◽  
Munadi

This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.


Author(s):  
Kun Chen ◽  
Zhiwei Shi ◽  
Jiachen Zhu ◽  
Haiyang Wang ◽  
Junquan Fu

To explore the control efficiency of circulation flow control technology, a circulation control actuator with an independent gas source has been designed and applied in roll attitude control of a small unmanned aerial vehicle. The circulation control devices are arranged at the two ends of the wing on an unmanned aerial vehicle scale model, the changes in aerodynamic force and aerodynamic moment caused by turning on the actuator are measured in a wind tunnel, and the flow field characteristics are analysed using particle image velocimetry technology. The flight control effect of the roll attitude is verified via a flight test. Experimental and flight test results show that the control of roll attitude can be achieved by turning on the circulation control actuator on one side, and the maximum efficiency that the circulation control generates is equivalent to 8° aileron deflection with production of a favorable yaw moment to achieve a coordinated turn. The circulation control actuator can increase lift and reduce drag when opened on both sides simultaneously. The maximum lift-to-drag ratio of the UAV increased from 5 to 9, and this approach can also suppress flow separation and delay stall at high angles of attack. The aileron or trailing edge flaps can be replaced with circulation control actuators, and the circulation control technology can also be applied to aerodynamic performance improvement and flight control in other types of aircraft.


2018 ◽  
Vol 6 (4) ◽  
pp. 235-248 ◽  
Author(s):  
Alton Yeung ◽  
Goetz Bramesfeld ◽  
Joon Chung ◽  
Stephen Foster

A small unmanned aerial vehicle (SUAV) was developed with the specific objective to explore atmospheric wind gusts at low altitudes below 500 m. These gusts have significant impact on the flight characteristics and performance of SUAVs. The SUAV carried an advanced air-data system that includes a five-hole probe, which was adapted for this specific application. In several flight tests the entire test system was qualified and gust data were recorded. The subsequent experimentally derived gust data were post-processed and compared with turbulence spectra of the MIL-HDBK-1797 von Kármán turbulence model. On the day of the flight test, the experimental results did not fully match the prediction of the von Kármán model. Meanwhile, the wind measuring apparatus were proven to be able to measure gust during flight. Therefore, a broader sampling will be required to generalize the gust measurements and be compared with the existing models.


Sign in / Sign up

Export Citation Format

Share Document